
SORS: A Scalable Online Ridesharing System

Blerim Cici, Athina Markopoulou
University of California, Irvine, USA
{bcici, athina}@uci.edu

Nikolaos Laoutaris
Telefonica Research, Spain

nikolaos.laoutaris@telefonica.com

ABSTRACT
Ridesharing systems match travelers with similar trajectories and
have the potential to bring significant benefits to individual users as
well as to the city as a whole. In this paper, we design and evaluate
SORS– a scalable online ridesharing system, where drivers and pas-
sengers send their requests for a ride in advance, possibly on a short
notice. SORS is modular and consists of two main, loosely coupled,
components: the Constraint Satisfier and the Matching Module.
The Constraint Satisfier takes as input information about the de-
sired trajectories and spatio-temporal constraints of drivers and pas-
sengers and it returns a list of feasible (driver, passenger) pairs. We
use a road networks data structure, optimized for the specific spatio-
temporal queries in the context of ridesharing, and we show that our
Constraint Satisfier has a 4.65x more scalable query time than a
general-purpose database. We represent the feasible pairs of drivers
and passengers as a weighted bipartite graph with edge weight be-
ing the length of the shared trip of the pair, which captures the rev-
enue in real-world ridesharing systems, such as Lyft Carpool. The
Matching Module then takes as input this weighted bipartite graph
and returns the maximum weighted matching (MWM), using an al-
gorithm that solves the problem online and efficiently, by incremen-
tally updating the matching solution in real-time. We show that our
algorithm achieves 51% larger weight (i.e., total revenue) compared
to greedy heuristics used by many real systems today. We also eval-
uate the SORS system as a whole, using mobile datasets to extract
driver trajectories and passenger locations in urban environments.
We show that SORS can provide a ridesharing recommendation to
individual users within a sub-second query response time, even at
high workloads.

1. INTRODUCTION
The car has been for some time one of most heavily used ground

transportation vehicles, and in it is the dominant one in the US. Ac-
cording to American Community Survey Reports, there are more
than 130 million commuters, and almost 80 of them drive alone
when commuting [1]. This has many negative consequences in ur-
ban environments for individuals as well as for the city as a whole:
pollution, traffic, high car expenses, and loss of productivity.

Ridesharing is a promising approach for reducing car usage in
the spirit of sharing economy: individuals share a vehicle for a trip

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IWCTS’16, October 31-November 03 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4577-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/3003965.3003971

and split travel costs. Ridesharing combines the flexibility and speed
of private cars with the reduced cost of public transportation. Re-
cently, companies such as Uber and Lyft announced ridesharing
pilots targeted to commuters. Uber recently announced uberHOP
and uberCOMMUTE [2]. Lyft announced Lyft Carpool [3]. We
would like to emphasize that these ridesharing services are different
from the taxi-like services typically provided e.g., by uberPOOL
[4], which allows taxi passengers to share a similar route. These pi-
lot services came out recently, and independently of our work, and
validate the importance of ridesharing (as opposed to taxi-like) sys-
tems, which are the focus of this paper.

In this paper, we design and evaluate such a scalable online ride-
sharing system – SORS. Requests for sharing a ride arrive over time,
possibly within a short notice, and expire after a certain time or when
users find a ride. Our focus is also on online ridesharing, where par-
ticipants do not need to schedule their trips well in advance [5], since
studies have shown that late trip scheduing is an important feature
for the users; for example, when asked how far ahead of time they
would like to organize a shared ride, 43% of people answered 15-
60 minutes before departure [6]. Our system dynamically matches
drivers and passengers and provides ridesharing recommendations
accordingly, so as to both meet individual user constraints and to
maximize a global objective, namely the total revenue for the sys-
tem. We design SORS as a modular system consisting of two main,
loosely connected, components: Constraint Satisfier and Match-
ing Module, as depicted on Fig. 1.

The first component, the Constraint Satisfier, takes as input the
itineraries and spatio-temporal constraints of individual drivers and
passengers and provides a list of feasible (driver, passenger) pairs
that satisfy those constraints. A key challenge in this module lies in
its scalability. To that end, we use a road networks data structure,
specifically optimized for the spatio-temporal queries in the context
of ridesharing. We show that our Constraint Satisfier system is
more scalable than what can be built using state-of-art but generic
spatio-tempotal databases: e.g., query time increases with the num-
ber of users, but 4.65x slower when compared to MongoDB. We rep-
resent the feasible pairs found by Constraint Satisfier as bipartite
graph between passengers and drivers, with edge weights represent-
ing the length of the pair’s shared trip. The latter is motivated by
the revenue model that today’s commercial systems (such as Lyft
Carpool) use to charge for shared rides.

The second component, the Matching Module, takes as input
the weighted bipartite graph (which already satisfies individual
users’ constraints) and returns the maximum weighted matching
(MWM) that maximizes a global objective (the total weight repre-
sents the systems’ revenue). A key challenge in the design of this
component is the inherent computational complexity of the MWM
problem, which is NP-hard. We propose an efficient algorithm,
Online MWM, and we show that it achieves a total weight 51%
higher than greedy heuristics used by many real systems today.

A common challenge that both components face is the online na-

Figure 1: SORS Overview. Drivers and passengers enter their requests: the driver provides her trajectory, the passenger provides her
source and destination, both provide their tolerance in deviating from their trajectory and timeline. The Constraint Satisfier finds
feasible (driver,passenger) pairs that satisfy individual users’ constraints. It builds a weighted bipartite graph; the weight of an edge
corresponds to the length of the shared trip, which translates to revenue. The Matching Module takes the bipartite graph as an input
and produces a matching that maximizes the total weight (revenue for the system). Finally, drivers and passengers are notified with
ridesharing recommendations.

ture of problem. SORS’s modular design can handle efficiently the
requests that arrive or expire in an online fashion, by utilizing ef-
ficient queries of feasible pairs, dynamically updating the weighted
bipartite graph, and incrementally updating the matching solution
accordingly (Online MWM uses augmenting path methods to up-
date the current optimal matching). We evaluated the entire SORS
system using mobile datasets to extract realistic mobility patterns
(namely driver trajectories and passenger locations) in urban envi-
ronments. Our evaluation shows that SORS can provide a rideshar-
ing recommendation to individual users with a sub-second query re-
sponse time, even at high workloads.

The structure of the paper is as follows. Section 2 summarizes
related work. Section 3 provides a system overview. Section 4 and
5 describe the two main system components: the Constraint Sat-
isfier and the Matching Module, respectively. Section 6 presents
evaluation results and Section 7 concludes the paper.

2. RELATED WORK
Commercial Ridesharing. Ridesharing startups include Zimride

and Scoop [7] facilitate ridesharing between employees of large cor-
porations. This makes the problem less challenging than in the gen-
eral case, since users have the same destination (the company they all
work for) and the same arrival time, and the system has to match only
the home locations of drivers and passengers, thus reducing the num-
ber of potential pairs. Recently, Uber and Lyft, which are primarily
on-demand taxi companies, announced ridesharing services for com-
muters: Uber announced uberHOP and uberCOMMUTE [2] and
Lyft announced Lyft Carpool [3]. The algorithms used in those ser-
vices are proprietary and it is not possible to compare against them.
However, they serve as a guideline for our SORS, and we formulate
our ridesharing problem to be in line with them.

On-demand Taxi-sharing (e.g., the main services of Uber and
Lyft) use smartphone devices to schedule trips between drivers
and passengers. They employ dedicated drivers who have no strict
spatial or temporal constraints. Taxi-sharing [8, 9] resembles online
ridesharing, but since it does not consider spatial and temporal
constraints for the driver, requires different algorithms. Both
Uber and Lyft offer cheaper versions of their on-demand taxi
services that include ridesharing: Uber offers uberPOOL and
Lyft offers LyftLine. These two services facilitate ridesharing for
taxi passengers who ride along a similar route, and they do not
takes into account spatial and temporal constraints for the driver.
Therefore, on-demand taxi-sharing is very different than ridesharing
for commuters.

Academic Research provides valuable insights into ridesharing,
primarily through surveys on ridesharing optimization [10] and
small-scale ridesharing demos [6]. The work in [6] reports how far in
advance ridesharing participants want to schedule their trips. Other

studies characterized the behavior of ridesharing participants [11],
identified the individuals who are most likely to share a ride and
explained what are the main factors that affect their decision [12].
Prior work quantified the potential of ridesharing [13, 14] using
offline analysis of datasets. Excellent surveys on the formulation and
optimization of ridesharing and on the key computational challenges
include [10] and [5]. The focus of this paper is online ridesharing
(as opposed to offline analysis of its potential) and system design
(design and evaluation of SORS that needs to run in real time).

Comparison to Our Prior Work: A preliminary version of this
work appeared as short paper/poster in SigSpatial 2015 [15]. It
presented the high-level idea of splitting the functionality into
two loosely coupled modules: the Constraint Satisfier and
the Matching Module. However, the design of each module
was off-the-shelf and there was only toy evaluation. In this long
paper, we build on and improve over [15], but there are clear new
contributions. First, we design a specialized Constraint Satisfier:
it uses a state-of-the-art data structure specialized to our problem
(the road network) to store latitude and longitude coordinates
of users moving in a city. Compared to SatisfierDB in [15],
which was built using MongoDB, Constraint Satisfier is more
scalable: the query time grows 4.65 slower with the number of
users than with MongoDB. Second, we changed the formulation of
the Matching Module that selects pairs of drivers-passengers to
share a ride. In [15], the goal was to maximize the total number of
passenger-driver pairs (maximum cardinality matching), while the
goal here is to maximize the total distance drivers and passengers
travel together (maximum weight matching). This new objective is
closer to real-world systems (e.g.uberHOP and uber COMMUTE
charge proportionally to the shared trip length) but the MWM
problem becomes computationally hard, while MCM is known
to be solved efficiently. To solve MWM efficiently and online,
we designed a new Online MWM that is 14.4% better than
our MCM 0-1 Algorithm in [15]. Finally, this paper provides a
comprehensive evaluation of the whole system using a realistic
workload of user requests extracted from spatio-temporal datasets.
We show that SORS can provide a ridesharing recommendation
within a few seconds from receiving a request, even under heavy
workload, while increasing the system revenue by 51% compared to
current commercial systems; we study the sensitivity of the system
to various parameters, such as ahead-of-time notification, and we
provide useful insights for designing and deploying real-world
ridesharing systems.

3. SYSTEM OVERVIEW

3.1 System Requirements
We define ridesharing as a one-time trip shared between one driver

Notation Definition
(lat

(h)
p , lng

(h)
p) Source location for p (“S” or ”H”)

(lat
(w)
p , lng

(w)
p) Destination location for p (“D” or ”W”)

t
(h)
p Earliest acceptable departure time for p
t
(w)
p Latest acceptable arrival time for p
t′

(h)
p Latest acceptable departure time for p

(it depends on t(w)
p)

∆t2 = t′
(h)
p − t(h)p Delay Tolerance of p
t
(r)
p Time when p sends request to SORS

∆t1 = t
(h)
p − t(r)p ahead-of-time notification
δ Distance Tolerance.
Td Trajectory for driver d:

ordered list of (location, time) points
(lat

(0)
d , lng

(0)
d , t

(0)
d) Starting point of d’s trajectory

(lat
(nd)
d , lng

(nd)
d , t

(nd)
d) Ending point of d’s trajectory

Table 1: Notation for passenger p and driver d.

and one passenger, which is the most common case.1 The driver
specifies a trajectory and the passenger specifies a source (“S”) and
a destination (“D”).2 The driver can pick-up the passenger along
his way and drop-off closer to the passenger’s destination. Notice
the asymmetry in our definition of ridesharing: we want to match
a driver’s trajectory with a passenger’s source and destination loca-
tions,3 subject to certain spatiotemporal constraints. Drivers and pas-
sengers submit their requests before their desired departure time; this
ahead-of-time notification can be, for example, a few minutes before
departure or the evening before the trip, and in general a parameter
that affects performance. Finally, the passenger pays the driver ac-
cording to the length or duration of the shared trip (e.g., to cover fuel
expenses) and the ridesharing system keeps a percentage of that pay-
ment. The longer the shared part of the trip the higher the revenue.
Therefore, from SORS’s perspetive, it is desirable to match drivers
to passengers so as to maximize the total revenue.

Notation. Let S denote the set of all users, D denote the set of
drivers and P denote the set of passengers. Clearly D ⊆ S, P ⊆
S and D ∪ P = S. A location is described with its coordinates
(lat, lng). For every passenger p ∈ P , the request entered in the sys-
tem consists of the following information. For every driver d ∈ D,
the request entered in the system consists of the following informa-
tion, also depicted on Fig. 2. Drivers’ inputs, passengers’ inputs, and
ridesharing parameters are summarized in Tab. 1.

3.2 Driver and Passenger Constraints
Ridesharing needs to be convenient for both the driver and the

passenger: they shouldn’t deviate too much from their routine and
they shouldn’t experience excessive delay or inconvenience.

Let us consider a given driver-passenger pair, d and p, depicted
on Fig. 2. We assume that the driver does not change trajectory or
departure time; however, he is willing to do a small detour to pickup
and drop off the passenger, as long as that detour does not exceed
his distance tolerance δ. Let i be the pick up (i.e. closest point of
d’s trajectory to the home of p), and j be the drop off (i.e. closest

1Lyft Carpool allows only one extra passenger so everyone gets to
their destination as quickly as possible. 77% of nationwide carpools
in 2000 involved one driver and one passenger, [13].
2In the evaluation section, we consider a use case where the source
is the home (“H”) and the destination is the work (“W”), thus the no-
tation H/W is used interchangeably with S/D in some figures. How-
ever, we would like to emphasize that our framework can address
arbitrary source/destination locations and trajectories.
3Of course, SORS can use the source and destination to infer
the trajectory of the passenger’s trajectory as well, e.g., by using
Googlemaps.

Figure 2: Example of spatio-temporal constraints when matching a pas-
senger pwith a driver d. The passenger p leaves from her source location
(home H) and is going to a destination (work W). The driver d has a
fixed trajectory (indicated in solid line) and departure time; each point
of the trajectory contains an arrival time. The driver d can deviate from
her trajectory (indicated in dashed line) to pick-up/drop-off the passen-
ger p, as long as the deviation does not exceed her distance tolerance: i.e.,
distH(p, d, i) ≤ δ and distW (p, d, j) ≤ δ. In exchange, the passenger
may wait until his latest departure time.

point of d’s trajectory to the work of p) location, and i < j. The
passenger conveniently gets a ride, picked up at his source (e.g. home
H) and dropped off at his destination (e.g. work W) location. In
exchange, he may have to wait and delay his departure up to his
latest departure time t′(h)p in order to arrive by the latest arrival time
t
(w)
p . Let delayH(p, d, i) and delayW (p, d, j) be the pick-up and

drop-off delays respectively.A pair (d, p) ∈ E is feasible iff both
the passenger and driver constraints are satisfied, i.e.:

w(d, p) =


dist(i, j), if t

(h)
p > t

(i)
d + delayH(p, d, j)

and t
(w)
p < t

(j)
d + delayW (p, d, j)

and max(distH(p, d, i), distW (p, d, j)) < δ
0, otherwise

A core challenge in ride sharing is to find feasible passenger-
driver pairs and points for pick-up (i) and drop-off (j) on the driver’s
trajectory, that meet all constraints. The response to such search
queries must be fast, in order for the ride-sharing system to be real-
time and scale with the number of users.

3.3 System Architecture
Fig. 1 shows an overview of the system architecture, which con-

sists of two main components. The first is the Constraint Satis-
fier, which takes as input the passengers’ and drivers’ requests and
produces feasible passenger-driver pairs.The second is the Match-
ing Module, that takes as input the bipartite graph of feasible pairs
and finds a maximum weighted matching. The two components are
loosely connected through the weighted bipartite graph, which is the
output of the first and the input to the second. An important aspect of
our system is that it is online: requests from drivers and passengers
can arrive dynamically (at times t(r)d , t

(r)
r , respectively) and also can

expire (when a driver arrives at the destination t(nd)
d , or after the lat-

est departure time of a passenger t′p(h)). When arrival/expiration
events happen, the two modules need to do incremental updates.
More specifically, the first module needs to update the records in
the database (driver’s trajectory points and passengers’ source, des-
tination and constraints) and the bipartite graph of feasible pairs. The
second module needs to update the matching solution, based on the
changes in the bipartite graph. The decomposition of the problem
into two parts, is key for enabling a modular, fast, online, optimal
system.

Figure 3: Storing spatio-temporal data in our specilized (road
network-based) Constraint Satisfier. The intersections of the
road network are stored in a tree data structure for fast access-
ing. That is the 1st order data structure that stores intersections
using as keys their (lat, lng) coordinates. Each key is paired with
a value, and the values (of the 1st order data structure) are sym-
bol tables that contain < key, value > pairs, refereed to as the
2nd order data structure. In the 2nd order data structure the
keys are the times when user appear at the specific intersection
and as a value the id of the user.

4. CONSTRAINT SATISFIER
This component receives the queries from the drivers and the pas-

sengers, and generates the feasible (driver, passenger) pairs. The
Constraint Satisfier needs to support fast insertion queries (e.g.
when new requests arrive), and fast searches queries (when match-
ing passengers and drivers) in real time.

4.1 SatisfierDB
We initially built the SatisfierDB, using off-the-shelf compo-

nents. We chose MongoDB because speed and scalability are our
primary concerns, and we do not require complex join queries that
relational databases offer. Moreover, MongoDB [16] is very popu-
lar in the industry (e.g. used by Foursquare [17]). MongoDB is a
document-oriented database that stores data in collections made out
of individual documents; each document is big JSON file with no
particular format or schema. Finally, MongoDB supports fast and
accurate spatio-temporal proximity queries.

Spatial Indexing: MongoDB offers supports for queries that calcu-
late geometries on an earth-like sphere, through the 2dsphere index
– a grid based geohashing scheme [18].

Fast data Insertion: MongoDB is designed for fast insertion
speed; it employs the cache of the operating system, which signif-
icantly reduces write costs. Fast insertion of data is very important
for a real-time system, since while data are being inserted in the
database, the process that is doing the insertion will do a write lock,
during which, no other process can read or write anything. This
means that one cannot take advantage of parallelization of insertion
queries (which can be easily done for read queries, because they use
a read-lock that allows other processes to read from the dataset).

4.2 Our Specialized Constraint Satisfier
Next, we build a specialized Constraint Satisfier, which is tai-

lored to the needs of our problem and it takes into account the unique
characteristics of our data. More specifically, our specialized system
takes into account the underlying road network of the trajectories. To
that end, our Constraint Satisfier utilizes and fine-tunes a state-of-
the-art spatio-temporal data structure: the road network [19, 20], as
depicted on Fig. 3.

Road Network: The Constraint Satisfier uses a road network
to store the (lat, lng) coordinates of the users. The road network
contains intersections, in the form of (lat, lng) coordinates. The

(lat, lng) coordinates are stored in a tree structure (1st order struc-
ture in Fig. 3) with the coordinates being the keys. The values that
the keys (coordinates) are paired with are symbol tables that contain
< key, value > pairs (2nd order structure in Fig. 3). In the 2nd or-
der data structure the keys are the times when user appear at the spe-
cific intersection and as a value the id of the user. When a new driver
request arrives, the (lat, lng) points of her trajectory are mapped to
their closest intersections; from there (the closest intersections) they
are mapped to the 2nd order structure (a< key, value > symbol ta-
bles) where they are stored based on their times (of arrival at the in-
tersections). When a passenger wants to find the driver that can pick
her up, the Constraint Satisfier (1) will look at the intersections
that are within δ of her home, and for each one of this intersections
(2) it will get the drivers that are within time constraints; then, the
Constraint Satisfier (3) will do the same for the work locations,
and (4) the drivers that can both pick-up and drop-off the passenger
will be returned. A similar procedure will be followed for when a
driver is trying to find passengers; for each one of the points of her
trajectory the Constraint Satisfier will find the passengers that are
withing spatio-temporal constraints and can be both picked-up and
dropped-off.

Implementation Details: We used a KDTree for the 1st order
structure, and MultiMaps4 for the 2nd order structure. A KDTree
is a space-partitioning data structure for organizing points in a
k-dimensional space; for our (lat, lng) coordinates k is 2. We
use road intersections, instead of road segments due to practical
reasons: our road network (which will be described in the Evaluation
Section) is dense and the distances between them are short [21] 5.
Moreover, our (1st order structure is a static road network and we
don’t have to update or delete nodes; all nodes are added when a
priori. We use MultiMaps for the 2nd order data structure, which we
want to be dynamic and support fast add/remove operations.

5. MATCHING DRIVERS-PASSENGERS
In this section, we describe the Matching Module that takes as

input the bipartite graph of feasible driver-passenger pairs and pro-
vides a matching. Recall that the edges are weighted, with a weight
that corresponds to the length of the shared trip and is proportional to
the revenue made by SORS. We formulate the problem as maximum
weight matching (MWM), and we provide and algorithm (referred
to as Online MWM) that is efficient, and online (i.e. it continu-
ously updates the matching in the presence of arrival/expiration of
requests). As a baseline for comparison, we compare it to the 0-
1 Algorithm, described in [15] and the offline solution of MWM.

5.1 Online MWM Algorithm
Consider the bipartite graph of feasible pairs:G = (D∪P,E,W)

where E = {(d, p) : d ∈ D, p ∈ P} s.t. that the constraints of d, p,
as defined in a previous section, are satisfied. Each edge (d, p) ∈
E is associated with a weight W (d, p) indicating the length of the
shared trip between the driver and the passenger.

Our Online MWM algorithm breaks the graph of feasible pairs
into multiple sub-graphs based on the weight of their edges (e.g., the
1st sub-graph contains the top 1% of the edges, the 2nd sub-graph
contains the top 2%, etc.,) and for each one of the sub-graphs
applies Max Cardinality Matching (MCM), giving priority to
higher edges.MCM can be solved efficiently and very fast; our
bipartite graph that has tens of thousands of nodes and a few million
edges can be solved in seconds. Finding the Maximum Cardinality
Matching (MCM) on this bipartite graph is a classic problem
that can be solved efficiently (in O(min(|D|, |P |) · |E|) time)

4A Hash Table where the same key can map to multiple user ids. To
be more specific a key maps to a set of users.
5For a sparser road network large distances between intersections,
using road segments and an R-Tree would be better.

Figure 4: This figure shows how well our MCM-based algorithm
approximate the MWM offline. Online MWM breaks the graph
into multiple sub-graphs based on the weight of their edges, e.g.
sub-graph-1 contains the top 1% of the edges, while sub-graph-
2 contains the top 2% of the edges, e.t.c and then it applies an
augmenting path algorithm to find the MCM in each sub-graph.
The combined solution of all sub-graphs is the approximation
solution to the MWM problem.

and optimally using augmenting paths [22]. This classic (Ford-
Fulkerson) algorithm lends itself naturally to an online version that
can handle arrivals and departures of requests. Indeed, arrival of
driver/passenger requests lead to edges appearing/disappearing from
the bipartite graph, which can be be handled by efficient incremental
updates. Every time a request arrives, this results in one or more
edges appearing in the bipartite graph. All we need to do is to
find an augmenting path in the new auxiliary graph and update the
existing matching (in O(|E|)), instead of solving the problem from
scratch. Finally, Fig. 4 shows how our Online MWM compares to
the offline MWM solution (how well the algorithm approximates
the offline optimal solution).

5.2 Greedy Algorithm
Many on-demand taxi services have emerged recently, which act

as a broker between a taxi and a passenger, the primary example
being Uber. These companies use proprietary matching algorithms,
which are however widely believed to be simpler: e.g. typically
match a passenger “greedily” with the closest driver. As a baseline
for comparison, we define a Greedy Algorithm as follows: each
request is matched with its best available choice, at the time of its
arrival, e.g. a passenger is matched to the best unmatched driver
at the time her request arrives in the system. We are interested
in understanding how our global optimization (Online MWM)
compares to these simpler, greedy heuristics, in terms of the global
objective (i.e. total joint distance traveled).

6. EVALUATION
In this section we evaluate our ridesharing system using spatio-

temporal data from the city of New York. The data are summarized
in Tab. 2 and was obtained in our prior work [14]. More specifi-
cally, we evaluate the Online MWM in terms of the global objec-
tive (matching rations and sum of total shared trips, which translates
to revenue). Then, we compare our Constraint Satisfier with the
baseline SatisfierDB in turns of scalability.

6.1 Experimental Setting
Given the home/work locations of the users, their departure times

and the drivers’ routes, we compute the performance of the algo-
rithm for different values of ahead-of-time notification. We do a
discrete time simulation where all the events appear in a simulated
time-line based on the order of their arrival. In our simulation, there

City NY
Users 61K

Inter-point distance 100m
Average distance 16.1 km
Median distance 8.0 km

Average gps points
per trajectory 78.8

Table 2: Summary of Twitter-NY Dataset.

Figure 5: Performance under expected work load. We assume
that the requests will arrive randomly before the departure. The
probabilistic distribution to generate how long before departure
users will notify the system is a uniform distribution in range [15
minutes, 60 minutes]. According to the figure, the highest stretch
for our system occurs when the number of users (or nodes in the
bipartite graph) is at its peak. At that time each update – that
contains multiple new request – can required up to 12 seconds.

are two types of events :(1) request arrival, and (2) request expira-
tion.We show the speed of our system, as well as the matching ratio
and the sum of all shared trips (total shared trips). Also, we apply the
following spatio-temporal constraints: (i) a spatial constraint of 1 km
δ = 1 km and (ii) a delay tolerance of 10 minutes ∆t1 = 10. Finally,
our Constraint Satisfier uses the NY road network from [21]; the
road networked is represented by a weighted directed graph. The
graph contains 264K nodes and 734K edges, and weight of each
edge represents the distance between the nodes.

6.2 Results

Shared Trip Sum Comparison to
Offline MWM (%)

Offline MWM 4320 –
Online MWM 3957 −8.4
0-1 Algorithm 3460 −20

Greedy Algorithm 2623 −39

Table 3: Offline Result Comparison for a graph with size 61K
nodes (out of which only 48054 had a neighbor), and 1.5M edges.
Online MWM is 14.4% better than 0-1 Algorithm and 51%
better than Greedy Algorithm.

In Fig. 5 you can see the end-to-end experiment. According to the
figure, the highest stretch for our system occurs when the number of
users (or nodes in the bipartite graph) is at its pick. At that time each
update – that contains multiple new request – can required up to 12
seconds. When compared to the offline optimal, which takes more

10 20 30 40 50 60 70
thousands of users

0.05

0.10

0.15

0.20

0.25

0.30

Q
u
e
ry
 T
im

e

Constraint Satisfier Comparison.

SatisfierDB (1)

SatisfierDB (4)

Constraint Satisfier

Figure 6: Comparing the scalability of Constraint Satisfier and
SatisfierDB. Both Constraint Satisfier and SatisfierDB scale
linearly, but the slope of the SatisfierDB is 4.65 times greater
than the slope of Constraint Satisfier. Therefore, we say that
the specialized Constraint Satisfier is 4.65 times more scal-
able when compared to the SatisfierDB. When there are a few
users SatisfierDB tends to be faster; this happens because Con-
straint Satisfier is using a road network, with hundred of thou-
sands of intersection, and when the number of users is low
all this intersections are a burden. However, as the number of
users grows the query time of Constraint Satisfier grows at a
much slower rate than SatisfierDB; the road network of Con-
straint Satisfier pays of as the number of users keeps growing.

than two days to compute, Online MWM is 8.4% worse, but it’s
14.4% better than 0-1 Algorithm (see Tab. 3).

Fig. 6 show the query speed of three different implementations of
the constraint satisfier: (1) SatisfierDB with one process, (2) Sat-
isfierDB with four parallel process, and (3) the specialized Con-
straint Satisfier. We see that parallelization can improve the speed
of SatisfierDB, but the Constraint Satisfier is still faster and
much more scalable. Both Constraint Satisfier and SatisfierDB
scale linearly, but the slope of the SatisfierDB in (fig:query-speed)
is 4.65 times greater than the slope of Constraint Satisfier. There-
fore, we can say that the specialized Constraint Satisfier is 4.65
times more scalable when compared to the SatisfierDB that is build
using off the shelf components.

7. CONCLUSION
An anticipated breakthrough in ridesharing is the ability to sat-

isfy on-demand requests that do not require participants to schedule
their trips in advance [5]. This will provide a participant the reas-
surance that they would still be serviced if their travel-needs change
unexpectedly. In this paper, we design and evaluate an scalable on-
line ridesharing system (SORS) that handles dynamic ridesharing
requests, possibly with a short notice.

We break SORS into two main components: the constraint sat-
isfier and the matching module. The constraint satisfier, a.k.a Con-
straint Satisfier, takes as input the itineraries and spatio-temporal
constraints of drivers and passengers and provides feasible (driver,
passenger) pairs. We achieve scalability by designing a constraint
satisfier using a road networks data structure, specifically optimized
for our spatio-temporal queries. Our Constraint Satisfier system
is more scalable than what can be built using state-of-art off the shelf
components: query time increases 4.65x slower with the number of
users when compared to MongoDB.

We use the feasible pairs found by Constraint Satisfier to de-
fine a bipartite graph between possible drivers and passengers, with
edge weights representing the length of the shared trip of a pair.
The matching module takes as input the weighted bipartite graph

and returns the maximum weighted matching (MWM), which cap-
tures the objective of real-world ridesharing systems (such as Lyft
Carpool). We propose an efficient algorithm to solve the MWM
problem, which is 51% better than greedy heuristics used by many
real systems. Furthermore, the system is designed to handle effi-
ciently requests that arrive on-line, via efficient queries of feasible
pairs and incremental updates of the matching solution. We eval-
uate the entire SORS system using real mobile datasets to extract
driver trajectories and passenger locations in urban environments.
We show that SORS can provide a ridesharing recommendation to
individual users with a sub-second query response time, even at high
workloads.

8. ACKNOWLEDGMENTS
We would like to thank Kyriakos Mouratidis, an expert in spatio-

temporal databases, for his feedback on our constraint satisifer.

9. REFERENCES
[1] B. McKenzie and M. Rapino, “Commuting in the united states: 2009.”

American Community Survey Reports, 2009.
[2] “More people in fewer cars.” https://newsroom.uber.com/

us-washington/more-people-in-fewer-cars/, 2016.
[3] “Meet lyft carpool: A new way to commute.”

http://blog.lyft.com/posts/meet-lyft-carpool,
2016.

[4] “Announcing uberpool.”
https://newsroom.uber.com/announcing-uberpool/,
2014.

[5] M. Furuhata, M. Dessouky, F. Ordónez, M.-E. Brunet, X. Wang, and
S. Koenig, “Ridesharing: The state-of-the-art and future directions,”
Transportation Research Part B: Methodological, vol. 57, no. 0, pp. 28
– 46, 2013.

[6] H. S., “Implementing Real-Time Ridesharing in the San Francisco
Bay Area. ,” Master’s thesis, Mineta Transportation Institute, San Jose
State University, CA, USA, 2010.

[7] “Scoop.” https://www.takescoop.com/, 2015.
[8] S. Ma, Y. Zheng, and O. Wolfson, “T-Share: A Large-Scale Dynamic

Taxi Ridesharing Service.,” in Proc. of ICDE, 2013.
[9] J. F. Cordeau and G. Laporte, “The Dial-a-Ride Problem (DARP):

Variants, modeling issues and algorithms,” 4OR, vol. 1, 2003.
[10] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization for

dynamic ride-sharing: A review,” European Journal of Operational
Research, vol. 223, no. 2, pp. 295 – 303, 2012.

[11] R. Teal, “Carpooling: Who, how and why,” Transportation Research,
vol. 21A, no. 3, pp. 203–214, 1987.

[12] K. D., “Carpooling: Status and potential.” Final Report U.S.
Department of Transportation, DOT-TSC-OST-75-23, 1975.

[13] A. M. Amey, “Real-Time Ridesharing: Exploring the Opportunities
and Challenges of Designing a Technology-based Rideshare Trial for
the MIT Community,” Master’s thesis, MIT, 2010.

[14] B. Cici, A. Markopoulou, E. Frias-Martinez, and N. Laoutaris,
“Assessing the Potential of Ride-Sharing Using Mobile and Social
Data: A Tale of Four Cities,” in Proc. of UbiComp (Best Paper
Nominee Award), 2014.

[15] B. Cici, A. Markopoulou, and N. Laoutaris, “Designing an On-Line
Ride-Sharing System,” in Proc. of SIGSPATIAL (short paper), 2015.

[16] “Mongodb.” http://www.mongodb.org/.
[17] “Scaling mongodb at foursquare.”

http://www.10gen.com/presentations/mongonyc-
2012-scaling-mongodb-foursquare.

[18] “Geospatial indexes in mongodb.” http://docs.mongodb.org/
manual/core/geospatial-indexes/.

[19] E. Frentzos, “Indexing objects moving on fixed networks,” in Proc. of
SSTD, 2003.

[20] K. Mouratidis and M. L. Yiu, “Anonymous query processing in road
networks,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, 2010.

[21] “9th dimacs implementation challenge - shortest paths.” http:
//www.dis.uniroma1.it/challenge9/download.shtml,
2015.

[22] C. H. Papadimitriou and K. Steiglitz, “Algorithms for matching,” in
Combinatorial Optimization, Algorithms and Complexity, ch. 10,
pp. 221–226, 1998.

