
User profiling in the time of HTTPS

Roberto Gonzalez
NEC Labs. Europe

roberto.gonzalez@neclab.eu

Claudio Soriente
Telefonica Research

claudio.soriente@telefonica.com

Nikolaos Laoutaris
Telefonica Research

nikolaos.laoutaris@telefonica.com

ABSTRACT
Tracking users within and across websites is the base for
profiling their interests, demographic types, and other in-
formation that can be monetised through targeted adver-
tising and big data analytics. The advent of HTTPS was
supposed to make profiling harder for anyone beyond the
communicating end-points. In this paper we examine to
what extent the above is true. We first show that by know-
ing the domain that a user visits, either through the Server
Name Indication of the TLS protocol or through DNS,
an eavesdropper can already derive basic profiling infor-
mation, especially for domains whose content is homo-
geneous. For domains carrying a variety of categories
that depend on the particular page that a user visits, e.g.,
news portals, e-commerce sites, etc., the basic profiling
technique fails. Still, accurate profiling remains possi-
ble through transport layer fingerprinting that uses net-
work traffic signatures to infer the exact page that a user is
browsing, even under HTTPS. We demonstrate that trans-
port fingerprinting remains robust and scalable despite hur-
dles such as caching, dynamic content for different de-
vice types etc.Overall our results indicate that although
HTTPS makes profiling more difficult, it does not eradi-
cate it by any means.

1. INTRODUCTION
Online user profiling is a profitable business ex-

tensively carried out by third parties such as search
engines, ad networks and network providers. It lever-
ages browsing activities to infer user interests and
intentions. Since HTTP traffic has no privacy pro-
visions, any third party can pry on the connections
to a websever and profile users. HTTPS enhances
online user privacy by encrypting the communication
between a browser and a webserver. Major internet
stakeholders are pushing for an HTTPS everywhere
web with the promise of increased security and pri-
vacy and, therefore, of mitigating the problem of user
profiling by third parties.

In this paper we assess the extent by which HTTPS
prevents third parties from profiling users based on
the websites they visit. We show that the widely used

Server Name Indication (SN) extension of the TLS
protocol leaks user interests to third parties which
eavesdrop on the (encrypted) connection between a
client and an HTTPS webserver. The SN extension
improves address-space utilization as it allows to con-
solidate several HTTPS webservers at a given IP ad-
dress. However, SN also hinders user privacy as it
leaks the domain requested by a user, despite the
HTTPS pledge of a secure and private connection.

The privacy leakage due to SN is especially se-
vere in websites with homogenous content across its
pages. For example, a connection request to www.

foxsports.com tells a lot about the user interests,
regardless of the actual page the user is browsing
within that website. For a website with more va-
rieties across its pages, the domain requested by a
user may not tell enough about the interests of that
user. For example, a connection to www.amazon.com

may not tell much about a user. However a connec-
tion to www.amazon.com/books would reveal interests
in books and a connection to www.amazon.com/baby

may indicate an intent to buy baby items. We show
that by using fingerprinting techniques, a network
eavesdropper can accurately tell the page a user is
browsing within a domain and, therefore, build a re-
fined user profile.

Users profiling despite HTTPS is achievable, given
enough bandwidth to fingerprint the websites under
observation. If bandwidth is an issue, we also define
an optimization problem that allows an eavesdropper
to periodically pick the websites to fingerprint in order
to maximize the number of users that are correctly
profiled over time.

Overall, our findings show that HTTPS, while be-
ing a formidable tool to strengthen the security of
web applications, cannot protect users against online
profiling by third parties.

2. BACKGROUND AND MODEL

User profiling.
Profiling systems often use a closed-source mapping

between URLs and interest categories. We follow

1

www.foxsports.com
www.foxsports.com
www.amazon.com
www.amazon.com/books
www.amazon.com/baby


the approach of previous work [1] and instantiate
the mapping using the Display Planner of Google
AdWords [2] – an online tool that given a URL returns
the set of categories assigned by AdWords to that URL.
Categories are arranged in a hierarchy and each URL
has, on average, 10 assigned categories. The Display
Planner also provides the inverse mapping, i.e., given
a category it provides a list of websites that belong
to that category.

HTTPS and Server Name Indication.
HTTPS enhances HTTP with the Transport Layer

Security (TLS) protocol. TLS provides a secure pipe
to a server that is usually authenticated via an X.509
certificate. The secure pipe is established via a TLS
handshake – a procedure that allows the client and
the server to establish cryptographic keys to encrypt
and authenticate data exchanged through the pipe.

Given the ever increasing awareness on the privacy
issues of HTTP, major web stakeholders are mandat-
ing secure (i.e., HTTPS) connections to serve their
websites [3, 4]. Furthermore the ToR project and EFF
promote the HTTPS Everywhere extension [5, 6], that
automatically redirects browsers to the HTTPS ver-
sion of a website when available. One goal of this
collective effort towards an HTTPS web is to increase
online privacy with respect to network eavesdroppers.
HTTPS ensures that a user is connected to the legiti-
mate webserver and that the exchanged information
cannot be eavesdropped by third parties. 1

Server Name Indication (SN) is an extension of the
TLS protocol by which a client specifies the hostname
it is attempting to connect in the client hello mes-
sage (the first message of a TLS handshake). The
extension is widely used by modern browsers and al-
lows a server to serve multiple HTTPS websites, each
with its own X.509 certificate, from the same IP ad-
dress. The SN is, therefore, sent in cleartext and can
be eavesdropped by any party tapping on the network
between the client and the server.

System Model.
We consider a network eavesdropper that tries to

profile users tapping on their network connections.
We assume an HTTPS everywhere web where users
connect to any website via HTTPS. The network
eavesdropper, therefore, does not have access to the
cleartext traffic exchanged between the user browser
and the webservers but only sees encrypted flows.
However, we assume the eavesdropper can infer the
hostname requested by the user by looking at the
SN in the client hello message. In case SN is not

1Security guarantees of HTTPS do not take into account
phishing attacks or flaws in the public key certification
system.

used, client queries to DNS (recall that DNS has no
provisions for confidentiality) or simply a whois on
the destination IP address may reveal the hostname
requested by the user.

We simplify the structure of a website and the user
browsing behaviour as follows. Each website has a
main page and a set of 1-st level pages (i.e., the pages
linked on the main page). We do not consider pages of
the website beyond the ones linked on the main page,
but our results can be easily generalized to account for
more complex website structures. Similar to previous
work [7, 8, 9, 10, 11], we assume a user visits one page
at a time for each domain. 2 This could be either
the main page, or any of the 1-st level pages. The
eavesdropper tries to infer the page visited by the
user and assigns to her profile the corresponding set
of categories according to Google AdWords.

3. USER PROFILING BY SERVER NAME
Looking at the SN in the client hello message, a

basic eavesdropper learns the website a user is brows-
ing and assigns the categories of the main page to the
user profile. If the user were actually browsing a page
different from the main one, the profile built by the
basic eavesdropper may not be accurate.

A first step towards understanding the accuracy
of user profiling in an HTTPS everywhere web con-
sists in assessing the difference between the cate-
gories of a website main page (e.g., the categories
of www.nbcnews.com/) and the ones of any of its 1-st
level pages (e.g, the categories of www.nbcnews.com/
politics/).

In this experiment we have collected the list of top
websites returned by AdWords for each of its 24 first
level categories.Within each list, we have selected the
100 most popular websites based on their rank in
Alexa [12]. For each of the resulting 2.4K websites we
have fetched the URL of all the links available on the
main page that remains within the same host. We
did not consider external links like the ones to CDNs.
Each of the collected URLs (totalling to more than
110K URLs) was submitted to the AdWords Display
Planner to obtain its set of categories.

For each of the 24 top level categories of AdWords,
Figure 1 shows the distribution of the Jaccard index
among the categories assigned to the main page of a
website and the categories assigned to its 1-st level
pages. A Jaccard index close to 1 means that simply
assigning the categories of the main page to a user
creates a quite accurate profile, regardless of the actual
page the user is browsing within that website. A

2Discerning traffic when multiple pages of a domain are
fetched simultaneously using HTTPS, remains an open
problem.

2

www.nbcnews.com/
www.nbcnews.com/politics/
www.nbcnews.com/politics/


Shopping

Scie
nce

Computer
s &

Elec
tro

nics

Busin
ess

&
Industr

ial

Onlin
e Communitie

s
New

s

Inter
net

&
Tele

com

Pets
&

Anim
als

Beauty
&

Fitn
ess

Finance

Arts
&

Enter
tainment

Trav
el

Hobbies
&

Leis
ure

Books &
Lite

rature

Home &
Garden

Food &
Drin

k

Law
&

Govern
ment

Jobs &
Educatio

n

Autos &
Vehicle

s

Refe
ren

ce

People
&

Socie
ty

Sports

Real Esta
te

Games

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

In
d

ex

Figure 1: Distribution of the Jaccard index among the categories of the main page and the 1st-level pages.

Jaccard index close to 0 means that the same profile
technique may lead to a less accurate user profile.

Figure 1 shows a great variance depending on the
main category of the website. Users visiting Sports,
Real Estate or Games websites could be profiled very
accurately only by knowing the website their are con-
nected to. However, when a user visits any page
within a website related to, e.g., Shopping, Comput-
ers & Electronics or News, the user profile built by
assigning her the categories of the main page is likely
to be inaccurate.

4. TRAFFIC FINGERPRINTING
In this section we show how to improve profiling

accuracy by guessing the exact page a user is browsing
using traffic fingerprinting. Traffic fingerprinting [7, 8,
9, 10] is an active research area on techniques to infer
information (such as the visited page on an encrypted
connection) by solely observing traffic patterns at the
network/transport level.

Fingerprinting involves a training phase during
which the adversary builds a fingerprint of each of the
monitored pages. This is accomplished by fetching
multiple times the monitored pages and recording fea-
tures of the generated traffic such as packet size or
inter-arrival times. Later, the adversary eavesdrops
on the client’s connection, extracts the same features
from the client’s traffic, and tries to match the client
trace to one of the fingerprints computed during the
training phase. Differences between the training data
and the client (or test) data, due to, e.g., different
routes or congestions are mitigated using statistical
methods.

We use and adapt to our scenario the fingerprinting
technique of [11] – the most accurate web fingerprint-
ing framework to date – that uses as features the size
and the direction of each packet of a TCP connection.
The classifier is, therefore, robust against differences
in bandwidth or congestions along the route. The au-
thors of [11] show that page fingerprinting is hard in
an open-world scenario in which the client can browse
any page outside of the set monitored by the eaves-
dropper. We show that webpage fingerprinting can

amazo
n.co

m

rakuten
.co

m

aarp
.co

m

wonderh
ow

to.co
m

about.c
om

mash
able.

co
m

sla
sh

dot.o
rg

nbcn
ew

s.c
om

reu
ter

s.c
om

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

er
A

cc
u
ra

cy

PC
(No Cache)

PC
(Cache)

Mobile
Device

Figure 2: Accuracy of the classifier when fetching
pages from a PC (with and without cache) and from
a Mobile Device.

be reasonably accurate in a closed-world scenario in
which the eavesdropper monitors all the pages that the
client can possibly visit. This assumption is realistic
in our settings because the eavesdropper knows the
website requested by the user (by looking at the SN
in the client hello message) and must infer which
page she is browsing within this particular website.

The features we extract from the traffic generated
by downloading a page include: the number of in-
coming packets and the number of outgoing ones,
the total size of incoming packets and the total size
of outgoing ones, and a trace defined over the size
and the order of the observed packets.3 We use
an SVM classifier with an RBF kernel parametrized
with γ ∈ [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000] and
c ∈ [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000]. For each
monitored website, we capture with tcpdump the traf-
fic generated by fetching each of the 1-st level pages
50 times and measure the accuracy of the classifier
using 10-fold cross validation.

Classifier Accuracy.
For this experiment we pick 9 websites that have

low Jaccard index between the main page and the 1-st

3Given the space constraints, we refer the reader to [11]
for the details on the feature selection process.

3



level pages (see Figure 1). For each website we train
the classifier and test its accuracy in thee different
scenarios. We use a PC with Mozzilla Firefox with
and without cache, and a mobile device with Google
Chrome with cache enabled. In the latter scenario we
use the Android emulator to fetch the pages from an
emulated Nexus 5 using the build-in feature of the
emulator to simulate the conditions of a 3G network.

Figure 2 shows the accuracy of the classifier for the
9 websites in each one of the aforementioned scenar-
ios. We found the lower accuracy for the PC with
cache scenario when predicting pages of aarp.com
(0.79) while we experienced the highest accuracy for
amazon.com (0.97). Caching inevitably hinders the
accuracy of the classifier by 10.3% on average, but
the average accuracy never drops below 0.48. The
accuracy decreases because when parts of a page are
in the local cache, the traffic trace available to the
classifier becomes shorter and, therefore, more likely
to be confused with that of another page.4 The mobile
phone scenario suffers from a similar issue, not due to
caching only, but also because mobile versions of a site
are typically simpler than their desktop counterparts,
and thus they end up producing more similar traffic
traces.

From Page Prediction to User Profiling.
In this experiment we take a closer look at the effect

of the classifier accuracy on the quality of the user
profiles built by the eavesdropper.

Figure 3a shows the confusion matrix for edition.
cnn.com where pages are sorted lexicographically based
on their URL. For the same website and the same
sorting of its pages, the matrix in Figure 3b shows
the Jaccard index between any pair of 1st-level pages.
Due to the sorting, pages under the same branch of
the website, say edition.cnn.com/style appear se-
quentially, in both matrices. Figure 3a shows that
when the classifier makes a mistake, the output page
tends to be close to the correct one. For example
edition.cnn.com/style/arts is often mis-classified
as edition.cnn.com/style/fashion and viceversa.
This is because the features we use to train the classi-
fier look at the structure of a page (e.g., the number
and position of textboxes) rather than its content (e.g.,
the actual text). Therefore, when pages within the
same branch of a website share a similar structure, we
experience classification mistakes similar to the ones
of Figure 3a.

When mis-classification happens, the amount of
damage to user profiling accuracy depends on whether
the categories of the true page and the categories of the

4In the extreme case of a page whose elements are all in the
cache, the resulting trace becomes totally indistinguishable
from that of any other fully cached page.

page output by the classifier overlap or not. For exam-
ple, because of their similar structure, edition.cnn.
com/asia/ is likely to be predicted as edition.cnn.

com/africa/ by the classifier (see box 1 in Figure 3a);
however, given that the set of their categories is very
similar (see box 1 in Figure 3b), the mistake of the
classifier has very little impact on the quality of user
profiling. Of course this is not always the case. For
example the pages under edition.cnn.com/style/

(see box 2 in Figure 3a) are likely to be confused with
one another by the classifier. This, however, leads
to high profiling error because different pages under
the “style” branch of the website have little overlap
in term of categories (see box 2 in Figure 3b).

Figure 4 depicts the performance of the basic and
the advanced profiling techniques when monitoring
the 9 websites of Section 3. Dashed bars show the
precision and recall of the basic profiling technique
described in Section 3. Solid bars show the precision
and recall of the advanced profiling mechanism that
leverages the web fingerprinting technique described
above. User profiling leveraging web fingerprinting
clearly outperforms the basic profiling technique.

Classifier Freshness.
The difference between the time when the classifier

is trained and the time when pages are predicted
may affect the prediction accuracy. This is especially
true for very dynamic websites (e.g., news or online
community websites). In this experiment we discretize
time in epochs and we assume that website content
only change from one epoch to the next one. If the
train and the test data are collected in the same epoch,
we say that the classifier is fresh; otherwise we say
that the classifier is stale. We define epochs as days.
We train the classifier over a snapshot of the website
on a given day, and we try to predict pages fetched
throughout the following 6 days.

We expect a sensible difference in accuracy between
a stale classifier and a fresh one for dynamic pages
where content changes every day (e.g., news websites).
In the case of websites with static content, the dif-
ference between a stale classifier and a fresh one are
expected to be less pronounced. To verify this, we add
4 websites with mostly static content (2 corporate and
2 academic ones) to the the 9 websites of the previous
experiments.

Figure 5 shows the effect of staleness on the accu-
racy of the classifier for both a stateful and a dynamic
website. The dashed lines represent the percentage of
1st-level pages that remain linked in the main page
across days, while the solid ones represent the accu-
racy of the classifier. We observe the accuracy of the
classifier for the dynamic website decreases rapidly
while the accuracy for the static one decreases slowly

4

edition.cnn.com
edition.cnn.com
edition.cnn.com/style
edition.cnn.com/style/arts
edition.cnn.com/style/fashion
edition.cnn.com/asia/
edition.cnn.com/asia/
edition.cnn.com/africa/
edition.cnn.com/africa/
edition.cnn.com/style/


Predicted URL

A
ct

u
a
l

U
R

L

2

1

0

10

20

30

40

50

60

70

80

90

100

%
o
f

p
re

d
ic

ti
o
n

s

(a)

Predicted URL

A
ct

u
a
l

U
R

L

2

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

J
a
ca

rd
In

d
ex

(b)

Figure 3: Confussion matrix (a) of the classifier
and the Jaccard index between the categories as-
signed to two different pages (b) for edition.cnn.com.
Box number 1 highlights URLs of the type edi-
tion.cnn.com/[region]. Box number 2 shows URLs
under the branch edition.cnn.com/style/

during the first two days and then stabilizes around
80% accuracy. For both lines, the shadows denote the
minimum and the maximum of the statistics.

5. OPTIMIZING BANDWIDTH USE
In a real-world deployment, the eavesdropper may

not have the bandwidth required to refresh the classi-
fier of each monitored website at every epoch. In the
following we formulate an optimization problem for
maximizing the profiling quality given a bandwidth
constraint.

We consider an eavesdropper that monitors a corpus
of n websites w1, . . . , wn. Website wi has a main page
pi0 and si 1-st level pages pi1, . . . , p

i
si . We also use

c(pij) to denote the set of categories of page pij . When

browsing website wi, the user may visit any page pij ,
with j = 0, . . . , si. Since the connection is encrypted,
we do not make any assumption on which are the

amazo
n.co

m

ra
kuten

.co
m

aarp
.co

m

wonderh
ow

to
.co

m

about.c
om

mash
able.

co
m

sla
sh

dot.o
rg

nbcn
ew

s.c
om

reu
ter

s.c
om

0.0

0.2

0.4

0.6

0.8

1.0

Basic
Recall

Basic
Precision

Advanced
Recall

Advanced
Precision

Figure 4: Precision and recall of the baseline eaves-
dropper and the eavesdropper leveraging website fin-
gerprinting.

0 1 2 3 4 5 6

Days after training

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

er
A

cc
u

ra
cy

nbcnews.com
Classifier Accuracy

Stable URLs

bu.edu
Classifier Accuracy

Stable URLs

Figure 5: Accuracy of the classifier days after training
for a dynamic website (nbcnews.com) and a static one
(bu.edu).

most popular pages within wi. If the user visits page
pij , the correct categories that should be assigned to

that user when browsing wi are, therefore, c(pij). We

consider any category in c(pij) that the profiler assigns
to that user as a true positive. Similarly, any category
not in c(pij) that the profiler assigns to that user is a
false positive.

The basic eavesdropper of Section 3 learns wi from
the client hello message issued by the user browser
and assigns the categories of the main page c(pi0) to
that user. However, because of HTTPS, the baseline
profiling system cannot tell which page pij was visited.

If we denoted with T i and F i the true positive and
the false positive, respectively, we have:

• T i = 1
si+1

∑
j=0..si

|c(pi0) ∩ c(pij)|

• F i = 1
si

∑
j=1..si

|c(pj) \ c(p0)|

The advanced eavesdropper of Section 4 tries to
infer the page pij the user has fetched by looking at
the encrypted traffic trace. This is done by means
of a classifier trained on a snapshot of wi. As shown
in the previous section, the freshness of the snapshot
used to train the classifier impacts on its accuracy.

5

edition.cnn.com
edition.cnn.com/style/
nbcnews.com
bu.edu


We denote the expected number of true positives
and false positives with a classifier that is ti epochs
stale by T i

ti and F i
ti , respectively. Thus we have:

• T i
ti =

∑
j=0..si

π(pij , p
i
j)|c(pij)|+∑

j=0..si

∑
l=0..si, l 6=j π(pij , p

i
l)|(c(pij) ∩ c(pil))|

• F i
ti =

∑
j=0..si

∑
l=0..si, l 6=j π(pij , p

i
l)|c(pil)\c(pij)|,

where π(pij , p
i
l) denotes the probability of predict-

ing page pij as pil (depends on the freshness of the
classifier).

Given the expected number of true and false posi-
tives, we set B as the bandwidth budget made avail-
able to eavesdropper at every epoch, and bi as the
bandwidth required to refresh the classifier for webiste
wi. We also denote by ui the popularity of website wi

(i.e., the number of users that visit wi in an epoch).
Upon every epoch, the eavesdropper decides to

spend the budget B by training classifiers on a fresh
snapshots of a subset X of the monitored websites. If
website wi is included in X, the available budget is
reduces by bi and the expected number of correct cat-
egories assigned is ui · T i

0 , while the expected number
of categories miss-assigned is ui · F i

0. If website wi is
not included in X, the budget remains untouched and
the expected number of correctly assigned and mis-
assigned categories is ui · T i

ti and ui · F i
ti , respectively,

assuming the most recent classifier for wi is ti epochs
stale.

The selection of X, therefore, tries to maximize the
number of true positive and to minimize the number of
false negative, while respecting the available budget.

Select X ⊆ {1, . . . , n}

s.t. Max
∑
i∈X

ui(T i
0 −F i

0) +
∑
i/∈X

ui(T i
ti −F

i
ti)

Where
∑
i∈X

bi ≤ B

If a classifier were never trained on wi we fall-back
to the profiling technique of the näıve eavesdropper
so that the number of true positives is ui · c(pi0) and
the number of false positive is |c(pij) \ c(pi0)|.

The above problem resembles the well-known 0/1
knapsack problem with the only difference that items
that are not selected add a non-zero value to the total
gain.

A toy example.
To illustrate the workings and the value of the above

optimization we have conducted a simulation based
on the 15 websites from previous sections. We em-
pirically assessed the training bandwidth requirement
and probabilities of the confusion matrices, while we
used Alexa to obtain the popularity of each website.

0.0 0.2 0.4 0.6 0.8 1.0

Days

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

aarp.com
about.com

amazon.com
chron.com

cnn.com
nbcnews.com
rakuten.com
reuters.com

wonderhowto.com
mashable.com

slashdot.org
bu.edu

nec.com
telefonica.es

uc3m.es

500mb

0 5 10 15

2Gb

Figure 6: Output of the optimization problem across
15 days for 2 different bandwidth budgets (500mb
and 2Gb). A black box represents a website which
classifier must be refreshed on that day.

In Figure 6 we use a black box to mark a domain
that is being selected for re-training on a particular
day. We show which domains get to be classified every
day under two different budgets – 500mb and 2Gb,
representing 10% and 40%, respectively of the budget
needed to re-classify all sites every day.

We observe that bandwidth availability can strongly
affect the daily classification pattern. In case of 500mb
budget, the same set of websites gets to be picked for
classification every day. In the case of 2Gb, however,
different websites get to compete for the available
budget and thus end up being picked or skipped on
different days. The actual resulting pattern depends
on the interplay between website popularity, size, and
dynamicity of content.

The small number of websites in the above example
does not leave a lot of margin for profiling performance
difference between optimizing only once vs optimiz-
ing every day. We have, however, simulated a larger
example that includes 200 pages with a mix of popular-
ities, content dynamicity, and size and have observed
that in more complex settings the difference between
optimizing only once vs. every day is substantial.

6. CONCLUSIONS
To the best of our knowledge our study is the first

one to demonstrate that network eavesdroppers can
profile user interests despite HTTPS. We have shown
that even off-the-shelf traffic classification algorithms
can guess the page that a user is viewing. Caching and
dynamic content tailored to the device capabilities
make the whole effort harder but the obtained accu-
racy remains high. We believe that more specialized
classification algorithms, coupled with careful optimi-
sation of classification bandwidth can yield accurate
and scalable user profiling even in more complex set-
tings than the ones we have considered. We plan
to prove our claim by developing a fully functioning
prototype.

6



7. REFERENCES
[1] J. M. Carrascosa, J. Mikians, R. Cuevas,

V. Erramilli, and N. Laoutaris, “I always feel
like somebodys watching me measuring online
behavioural advertising,” in Proc. of ACM
CoNEXT’15.

[2] “Display Planner basics.” https://support.

google.com/adwords/answer/3056115?hl=en.
”[Online; accessed 12-May-2016]”.

[3] “SSL compliance.” https://support.google.

com/richmedia/answer/6015286?hl=en.
”[Online; accessed 12-May-2016]”.

[4] M. Belshe, R. Peon, and M. Thomson,
“Hypertext transfer protocol version 2 (http/2),”
RFC 7540, RFC Editor, May 2015. http:
//www.rfc-editor.org/rfc/rfc7540.txt.

[5] “HTTPS Everywhere.”
https://addons.mozilla.org/en-US/

firefox/addon/https-everywhere/. ”[Online;
accessed 12-May-2016]”.

[6] R. Dingledine, N. Mathewson, and P. Syverson,
“Tor: The second-generation onion router,” tech.
rep., DTIC Document, 2004.

[7] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and
M. Abadi, “Host fingerprinting and tracking on
the web: Privacy and security implications.,” in
Proc. of NDSS’12.

[8] A. Hintz, “Fingerprinting websites using traffic
analysis,” in Proc. of PETS’02.

[9] D. Herrmann, R. Wendolsky, and H. Federrath,
“Website fingerprinting: attacking popular
privacy enhancing technologies with the
multinomial näıve-bayes classifier,” in Proc. of
CCSW’09.

[10] A. Panchenko, L. Niessen, A. Zinnen, and
T. Engel, “Website fingerprinting in onion
routing based anonymization networks,” in Proc.
of ACM WPES’11.

[11] A. Panchenko, F. Lanze, A. Zinnen, M. Henze,
J. Pennekamp, K. Wehrle, and T. Engel,
“Website fingerprinting at internet scale,” in Proc.
of NDSS’16.

[12] “Alexa Top Sites.”
http://www.alexa.com/topsites. ”[Online;
accessed 12-May-2016]”.

7

https://support.google.com/adwords/answer/3056115?hl=en
https://support.google.com/adwords/answer/3056115?hl=en
https://support.google.com/richmedia/answer/6015286?hl=en
https://support.google.com/richmedia/answer/6015286?hl=en
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
https://addons.mozilla.org/en-US/firefox/addon/https-everywhere/
https://addons.mozilla.org/en-US/firefox/addon/https-everywhere/
http://www.alexa.com/topsites

	Introduction
	Background and Model
	User profiling by Server Name
	Traffic fingerprinting
	Optimizing bandwidth use
	Conclusions
	References

