
Graph Database Watermarking Using Pseudo-Nodes
Tsvetomir Hristov

Cyber Security Group, Delft University of Technology
The Netherlands

T.Hristov@student.tudelft.nl

Devriş İşler
IMDEA Networks Institute & UC3M

Spain
devris.isler@imdea.org

Nikolaos Laoutaris
IMDEA Networks Institute

Spain
nikolaos.laoutaris@imdea.org

Zekeriya Erkin
Cyber Security Group, Delft University of Technology

The Netherlands
Z.Erkin@tudelft.nl

ABSTRACT
Watermarking is used as proof of ownership for various data types
such as images, videos, software, machine learning models, and
databases. Datasets are crucial for data driven decision making us-
ing Machine Learning for tasks like prediction, recommendation,
classification, and anomaly detection. Hence, it is not surprising
that entire databases are being sold in data marketplaces. Protect-
ing ownership rights upon such databases is, therefore, becoming
increasingly important. Watermarking for relational databases has
been an active field of research since 2002. However, how to wa-
termark non-relational databases involving complex data types has
largely remained understudied. In this paper we revise previously
proposed techniques for non-relational database watermarking and
introduce an improved technique for graph database watermarking
inspired by Zhuang et al. [28]. Our technique employs randomiza-
tion to generate a watermark in an efficient manner that avoids the
computational complex genetic algorithm optimization of Zhuang et
al. We evaluated our technique in terms of performance, usability,
security, and robustness by implementing it as a proof-of-concept.
Our results showed that our technique is efficient, secure and robust
against guessing and deletion attacks.

CCS CONCEPTS
• Social and professional topics→ Computing / technology pol-
icy; • Intellectual property→ Digital rights management .

KEYWORDS
Graph database, watermarking, data ownership, data economy

ACM Reference Format:
Tsvetomir Hristov, Devriş İşler, Nikolaos Laoutaris, and Zekeriya Erkin.
2023. Graph Database Watermarking Using Pseudo-Nodes. In Proceedings
of Data Economy Workshop (Data Economy Workshop (DE ’23)). ACM,
Seattle, WA, USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Data Economy Workshop (DE ’23), June 18, 2023, Seattle, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
With the rapid growth of data driven technologies, data is becoming
a vital ingredient for the modern economy. Data marketplaces (DMs)
enable data buyers to buy data for important tasks, such as training
machine learning model, providing better service for costumers, etc.
One of the main challenges faced by DMs is how to protect own-
ership rights upon data against unauthorized distribution, copying
(pirating) and counterfeiting.

Watermarking [17] is a well-established and often-used technique
for protecting and validating intellectual property rights. Watermark-
ing embeds information into data by using secrets (e.g., private key, a
sequence of bits) only known by the owner. The secret knowledge in-
side watermarked data is later used as proof for claiming ownership.
Watermarking for proof of ownership has been extensively studied
for various types of data, including audio, video [5], images [4], soft-
ware [9, 26], databases [3, 14], different dataset types [6, 23, 29], and
(deep) neural networks [2, 27]. Despite the fact that non-relational
data is steadily growing in popularity due to their lack of schemas
adaptivity [7, 11], watermarking for non-relational databases is un-
derstudied. To store such enormous and useful data consisting of
complex data types and structure, NoSQL databases are introduced
to overcome the limitations of traditional databases.

In this paper, we investigate the existing watermarking approaches
and focus on a work by Zhuang et al. [28] in which the authors em-
bed a watermark in a MongoDB database using connected graphs.
Even though the approach in [28] is elegant, we propose an improved
version that does not require computationally complex genetic al-
gorithms while still remaining secure and robust against guess and
deletion attacks. Furthermore, our technique is capable of detecting
who leaked the database in addition to proving ownership.

More precisely, our technique as proposed by Zhuang et al. [28]
generates pseudo documents from a graph database, in which doc-
uments in the collection are represented as a graph. The gener-
ation of pseudo documents is based on random pre-selected col-
lections/groups from the database. Then each pseudo document is
marked using a high entropy secret which is later used as a part of
the watermarking secret, in addition to pseudo documents identifiers
(e.g., primary keys). To insert the watermarked pseudo document
into the original database, the original database is partitioned in
groups, and each watermarked pseudo document is linked to one of
the groups. When an owner suspects a copy of its database being
distributed without its authorization, it can prove its ownership on
the suspected database by running watermark extraction algorithm.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Data Economy Workshop (DE ’23), June 18, 2023, Seattle, USA Hristov et al.

It first identifies the pseudo documents and then verifies if identified
possible pseudo document(s) are marked by the private key.

We further implemented our technique with different parame-
ter settings using a real-world dataset about UK Companies [21]
supported by Neo4j to evaluate: 1) how much pseudo documents
change the original database which is ∼ 4.9%; 2) watermark gener-
ation time which takes around 272 seconds on average, 3) security
and robustness against deletion attack.

Our contributions: Our first contribution is the development of
a new watermarking scheme for graph database by improving the
previous state of the art work due to Zhuang et al. [28] by simplifying
it using randomization. We later implemented our scheme in open
source to evaluate its performance using a real world dataset with
different parameter settings. Finally, we analyzed the security and
robustness of our scheme against guessing and deletion attacks and
showed that it is resilient to such attacks.

2 RELATED WORK
In this section, we briefly introduce relational database watermarking
and NoSQL database watermarking.

Relational database watermarking. The first known technique
was proposed by Agrawal et al. [3] in 2002. Later, other techniques
are introduced for numerical databases by considering the statistics
of numeric values [20, 24]. Watermarking techniques introduce some
sort of distortion to the original data which may not be ideal for some
cases. To avoid distortion, distortion-free database watermarking
schemes have also been proposed: [10] is a distortion-free technique
that introduces fake tuples or columns in the original database.

NoSQL database watermarking. To the best of our knowl-
edge, there are few watermarking schemes introduced for NoSQL
databases. Khandu et al. [19] introduced a NoSQL database water-
mark scheme where each new entry is watermarked before being
added to the database. Than et al. [25] proposed a watermarking
technique for NoSQL databases that modifies the structure of the
key-value attributes for hiding information as proof of ownership.

Zhuang et al. [28] watermarks a MongoDB database using con-
nected graphs as illustrated in Figure 1. The documents from the
database are used to build a graph, where references between doc-
uments are represented as edges, and documents as nodes. Then,
pseudo documents are created using a genetic algorithm , a water-
mark is embedded into the pseudo nodes and they are added into the
database. Finally the documents are connected into a 𝑘-connected
graph. To detect the watermark, the algorithm finds the largest k-
connected graph and checks the watermark for those documents.

Considering the work by Zhuang et al.[28], we summarize its
shortcomings in the following:
Limitations of genetic algorithm. Genetic algorithms are designed
to tackle complex problems in optimization and search [15] by
optimizing a fitness function. Zhuang et al. deploy genetic algorithms
as a means of pseudo-document generation. Unfortunately, how this
part is implemented is not defined in the original work, which makes
their scheme impossible to reproduce. Furthermore, an attacker can
easily distinguish pseudo documents from real/original documents
by observing the distance to local/global maxima or minima.
Graph creation. Zhuang et al. group pseudo documents which are

Figure 1: Overview of Zhuang et al. [28].

connected to form a 𝑘-connected graph. While the approach is novel,
an attacker can detect the pseudo documents used for watermarking
by analyzing the graph generated from connections of documents,
e.g., pseudo documents in a group will be connected to each other.
Thus, the attacker can successfully remove the watermark.

3 GRAPH DATABASE WATERMARKING
3.1 Background
SQL and NoSQL Databases: SQL and NoSQL databases vary
by terminology: an SQL database consists of tables, which contain
rows, also called records, and columns. On the other side, NoSQL
databases consist of collections containing documents that store
information into key/value pairs, as explained in Figure 2.

Figure 2: Sketch showing the difference in terminology between
SQL and NoSQL database, published by Studio 3T, a GUI tool
for Mongo [1].

A typical SQL database stores all its information in tables, where
each table has a well-defined schema, and each entry must abide by
this scheme. A NoSQL database does not enforce a scheme, which
makes watermarking harder, as there is no guarantee that a docu-
ment follows a specific data model. Furthermore, NoSQL databases
vary by how they store relations between documents. A typical SQL

Graph Database Watermarking Using Pseudo-Nodes Data Economy Workshop (DE ’23), June 18, 2023, Seattle, USA

database uses a table to store relations between records, whereas,
for NoSQL databases, each type tackles the problem in their own
way. For example, document databases offer multiple solutions: nest-
ing/embedding, and referencing, while graph databases use edges.
Each edge between two nodes, or documents, is directed and can
store additional data about the relation. We use nodes and docu-
ments interchangeably throughout the paper. In Table 1 we present
our method notations used throughout the paper.

Table 1: Notations.

Notation Description
D The original database
D𝑤 The watermarked database
𝐷𝑖 𝑖𝑡ℎ record of the original database
𝐷𝑖
𝑤 𝑖𝑡ℎ record of the watermarked database
K A private key used for the watermarking process
P A pseudo document
𝐺D A group of documents from the database
𝐺P A group of pseudo documents
𝐼𝐷P

𝐺
The ids of watermarked documents inside the database

3.2 Overview
Our new private key-based graph database watermarking technique
inspired by Zhuang et al. [28] is blind in the sense that it does not
require the original database, robust, and secure against deletion
and guessing attacks.

As illustrated by Figure 3, our watermarking scheme consists of
two main algorithms: 1) watermark embedding, and 2) watermark
extraction. The embedding algorithm watermarks a graph database
using a high entropy secret. By calling the watermark embedding
algorithm, the owner creates a watermarked version of its database
which allows it to prove its ownership. Watermark extraction detects
if a suspected database is watermarked by the owner using the secrets
produced by embedding. If it outputs accept/verified, this evidence
would prove that the owner can claim ownership of the watermark
and thus the database.

3.3 Embedding
Embedding, shown in Algorithm 1, takes two inputs: an original
graph database D and a high entropy private key K generated by
a key generation function as K ← 𝐾𝑒𝑦𝐺𝑒𝑛(1_). Note that the key
generation algorithm can be computed offline by the owner.

The algorithm steps are as follows:
1) Generates groups of documents 𝐺D from D where each docu-
ment in D belongs to only one group as 𝐺D ← 𝐺𝑟𝑜𝑢𝑝𝐺𝑒𝑛(D).
2) Generates a group of pseudo documents 𝐺P using the origi-
nal dataset D and group information of the dataset 𝐺D as 𝐺P ←
𝑃𝑠𝑒𝑢𝑑𝑜𝐺𝑒𝑛(D,𝐺). Remark: Pseudo documents are synthetic docu-
ments that are generated based on the information of the field they
belong to. We explain the pseudo document generation later.
3) Each pseudo document in𝐺P is marked as𝐺P𝑤 ← 𝑀𝑎𝑟𝑘 (𝐺P ,K)
by using a private key K to generate a marked version G𝑤 .
4) After generating G𝑤 , each marked pseudo documents must be
inserted to D to create a watermarked database D𝑤 . To do so, each

watermarked pseudo document in G𝑤 is linked to a group.
5) Returns the watermarked database D𝑤 , the private key K, and
the list of identifiers of pseudo documents 𝐼𝐷P

𝐺
.

Algorithm 1 Watermark Embedding

Input: D, K
Output: D𝑤

1: 𝐺D ← 𝐺𝑟𝑜𝑢𝑝𝐺𝑒𝑛(D)
2: 𝐺P ← 𝑃𝑠𝑒𝑢𝑑𝑜𝐺𝑒𝑛(D,𝐺)
3: 𝐺P𝑤 ← 𝑀𝑎𝑟𝑘 (𝐺P ,K)
4: D𝑤 := []
5: for 𝐷𝑖 ∈ 𝐺D do
6: D𝑤 .𝑎𝑑𝑑 (𝐿𝑖𝑛𝑘 (𝐷𝑖 ,𝐺

P
𝑤))

7: end for
8: return {D𝑤 ,K, 𝐼𝐷P𝐺 }

After embedding, the owner stores the private key K, and the list
of identifiers of pseudo documents 𝐼𝐷P

𝐺
as a watermarking secret in

secure storage to use later for extraction. Note that the secret is used
as proof of ownership; thus, the owner has to protect it.
Group Generation: 𝐺𝑟𝑜𝑢𝑝𝐺𝑒𝑛 algorithm partitions the nodes in
each collection of D into groups. For this purpose, an algorithm is
used to find a random list of integers whose sum adds up to a number.
The algorithm is then given the𝑚𝑖𝑛 and𝑚𝑎𝑥 parameters as the range
and the number of nodes, which need to be watermarked, as the total
sum. The output is then used to partition the nodes into groups. For
example, if the algorithm is run with the range (3, 5) and a target
sum of 15, a viable solution is [3, 4, 3, 5]. This means the first group
will have 3 nodes (documents), the second 4 documents, and so on.
Determining optimal𝑚𝑖𝑛 and𝑚𝑎𝑥 requires further investigation as
we leave it as a future work.
Pseudo Documents Generation. A set of pseudo documents are
generated by an algorithm 𝑃𝑠𝑒𝑢𝑑𝑜𝐺𝑒𝑛 based on the original data-
base D and group/collection information of D. 𝑃𝑠𝑒𝑢𝑑𝑜𝐺𝑒𝑛 cre-
ates these pseudo documents by “borrowing” fields from other
real/original documents in D where the size of pseudo documents
is determined (e.g., randomly). First, for each pseudo document, it
randomly chooses a set of fields from some randomly chosen “donor”
documents in D and create the pseudo documents.

To determine which fields are "borrowed" a schema analysis is
manually performed beforehand, which is explained in more detail
in the next section. Note that different techniques can be deployed
(e.g., synthetic data generation [12]) for the creation of pseudo
documents. Investigation of such techniques and their impact on our
watermarking scheme are left as a future work as it requires further
analysis.
Marking. To mark a document, a simple algorithm is used to cal-
culate the watermark. 𝑀𝑎𝑟𝑘 function overwrites a numerical field
inside the pseudo document to carry the watermark using the private
keyK . For each numerical field1, a modulo operation is computed as
𝑛𝑒𝑤 = 𝐻 (𝑓 𝑖𝑒𝑙𝑑𝑠 | |K) mod 𝑓 𝑖𝑒𝑙𝑑𝑚𝑎𝑥 where 𝑓 𝑖𝑒𝑙𝑑𝑚𝑎𝑥 represents
the highest number for the fields in the original database and 𝐻 is
a collision resistant hash function. Later, the original field value is
replaced with 𝑛𝑒𝑤 .
1We only watermark the numerical values. However, watermarking text values is possi-
ble although it requires deep knowledge of the context that the texts are used [28].

Data Economy Workshop (DE ’23), June 18, 2023, Seattle, USA Hristov et al.

Figure 3: Overview of our graph database watermarking.

Linking and adding pseudo documents: After generating a water-
marked psuedo doc and an groups of original documents that they
will be inserted into, the challenge is to link pseudo documents to
the groups. 𝐿𝑖𝑛𝑘 algorithm is computed on the pseudo documents.
Linking algorithm treats each pseudo document as if it is a new entry
inserting to the database.

As the primary key can be used to hint about the location of
the pseudo documents, several ways to add a watermark inside the
database can be considered based on the way the database stores the
documents. For example, the primary key for a MongoDB database
is a random string; however, the primary key for a Neo4j database
is an integer. This research focuses on embedding documents into a
Neo4j database; however, similar techniques can be used for other
NoSQL databases.

Unfortunately, Noe4j has a limitation, where the primary key of a
node cannot be changed. This is why for the purpose of this research,
the watermarked nodes are simply added without any manipulation
of the primary key. To recall the pseudo documents, their primary
keys are also stored as a part of the watermarking secret.

3.4 Extracting
In Algorithm 2, we provided our watermarking extraction as a pseu-
docode. The owner suspects a graph databaseD𝑤 ’ that might belong
to it. Inputs of the watermark extraction are a suspected database
D𝑤’, the private key K, and the identifier list of marked pseudo
documents 𝐼𝐷P

𝐺
where the owner already possessesK and 𝐼𝐷P

𝐺
. For

watermark extraction, the following steps are taken:
1) Retrieve each document with identifiers in 𝐼𝐷P

𝐺
.

2) Check if the retrieved documents are marked by K by running
𝑀𝑎𝑟𝑘𝐶ℎ𝑒𝑐𝑘 algorithm.𝑀𝑎𝑟𝑘𝐶ℎ𝑒𝑐𝑘 compares the hashes of the orig-
inal fields in 𝐼𝐷P

𝐺
and the fields 𝑓 𝑖𝑒𝑙𝑑𝑠 ′ retrieved from D ′𝑤 and

returns accept if they are equal as 𝐻 (𝑓 𝑖𝑒𝑙𝑑𝑠 | |K) mod 𝑓 𝑖𝑒𝑙𝑑𝑚𝑎𝑥 =

𝐻 (𝑓 𝑖𝑒𝑙𝑑𝑠 ′ | |K) mod 𝑓 𝑖𝑒𝑙𝑑𝑚𝑎𝑥 . Remark. Note that as in previous

Algorithm 2 Watermark Extraction

Input: D𝑤’, K, 𝐼𝐷P
𝐺

Output: 𝐴𝑐𝑐𝑒𝑝𝑡/𝑅𝑒 𝑗𝑒𝑐𝑡
1: 𝐺P𝑤 ← 𝐹𝑖𝑛𝑑 (D ′𝑤 , 𝐼𝐷P𝐺)
2: 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑀𝑎𝑟𝑘𝐶ℎ𝑒𝑐𝑘 (𝐺P𝑤 ,K)
3: return 𝑟𝑒𝑠𝑢𝑙𝑡

(non-)relational database watermarking schemes, a threshold can
be set to decide if a document is marked as well as at least how
many documents shall be retrieved. For our technique, retrieving
one document for checking the mark is enough although requiring
a higher number of documents for marking can decrease the false
positive. In our work, we do not investigate such optimization.

4 EXPERIMENTAL SETUP AND RESULTS
4.1 Experimental Setup
Our experimental results are produced on a standard laptop ma-
chine with AMD Ryzen 93900XT 12-Core CPU 3.80 GHz Processor,
16GB of RAM, and a 64-bit Windows 11 operating system. We
implemented our watermarking scheme as a proof of concept pro-
grammed in Python and is publicly available [13]. The tests are run
inside a virtual environment [22], to ensure that the different test
setups do not interfere with each other. The tests were repeated 100
times and then averaged.

Dataset. We use a real world dataset UK Companies [21] which
is one of the default example datasets by Neo4j. The dataset contains
information about 35000 public companies in the United Kingdom,
their properties, owners, and political donations. The database has
four labels: 1) 𝑃𝑒𝑟𝑠𝑜𝑛 with 23606 entries; 2) 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 with 26226
entries; 3) 𝑅𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡 with 9 entries; and 4) 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 with 4728 en-
tries.

Graph Database Watermarking Using Pseudo-Nodes Data Economy Workshop (DE ’23), June 18, 2023, Seattle, USA

Most documents in the UK Company database share an edge
with a document of type Company. Thus, every node of type Person,
Property, or Recipient is watermarked by a node of type Company.
In turn, watermarking nodes of type Company are linked by pseudo
nodes from the other three types. This ensures that every node inside
the database can be watermarked; however, for simplicity, we only
consider nodes/documents with type Property in our evaluation.

Since graph databases inherit their schematic nature from NoSQL
databases, there is no defined structure for each document type.
However, a lot of the documents still share the same fields. An
example of a 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 document can be seen below:

{
"companyNumber": "04179322",
"name": "CURO TRANSATLANTIC LIMITED",
"mortgagesOutstanding": 1,
"countryOfOrigin": "United Kingdom",
"incorporationDate": "2001-03-14",
"category": "Private Limited Company",
"SIC": "64999 - Financial intermediation

not elsewhere classified",
"status": "Active"

}

Figure 4: Example of a 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 document from the UK Com-
pany dataset.

To evaluate our scheme, we used two types of metrics: 1) per-
formance based on timing; and 2) usability based on the number of
pseudo documents added to the dataset using different parameter
settings.

The first metric records the time for the watermarking algorithm
to embed a watermark and the amount of documents introduced. Log
files are manuall analyzed for the average time for each group to
be watermarked. The speed of the embedding algorithm is deduced
using the following formulas:

𝑆𝐷 =
𝑁𝑑

𝑡
and 𝑆𝐺 =

𝑁𝑔

𝑡
, (1)

where 𝑡 is the time in seconds it took for the algorithm to finish, 𝑁𝑑
is the number of documents in the database, and 𝑁𝑔 is the number
of groups that were formed by the algorithm. The formula measures
the number of documents watermarked per second - 𝑆𝐷 ; and the
number of groups watermarked per second - 𝑆𝐺 . Since the algorithm
randomly partitions the documents into groups and the heaviest com-
putation is performed per group, the speed per group is considered a
more important metric for performance.

Additional testing is conducted on the impact of parameters on the
general performance of the algorithm. Parameters such as minimum
group size𝑚𝑖𝑛 (which is selected from (5, 10)), maximum group size
𝑚𝑎𝑥 (which is selected from (10, 200)), and the size of watermarked
documents (which the size of pseudo documents) are considered to
have a high impact on the performance.

The usability of the watermark is evaluated by several key factors:
the number of pseudo documents added, the average, mean, and
median of certain numerical values, the number of edges per node,
etc. To ensure the usability of the database after the watermark,

manual analyses are performed on predefined values, looking for
changes introduced by the watermark.

4.2 Results

Figure 5: Performance of the algorithm.

Performance. The algorithm’s performance was measured in the
number of seconds the algorithm took to watermark all groups.
Because the number of groups is not fixed, we noted the number
of groups that needed to be watermarked and the time it took to
watermark them.

Figure 5 shows that the amount of groups that need to be water-
marked directly impacts the algorithm’s performance. As shown, the
algorithm follows a linear time complexity, indicating that the algo-
rithm can be scaled for large databases without compromising per-
formance. Additional calculations show that our scheme watermarks
5.28 groups per second on average without parallelization/multi-
threading.
Usability. As all previous graph database watermarking schemes,
our technique also introduces distortion to the original database by
adding pseudo documents. To evaluate the amount of distortion in
the original database after embedding, we measured the number of
pseudo documents inserted by setting various minimum and maxi-
mum group sizes. Figure 6 shows that when the difference between
maximum and minimum group sizes increases, the number of pseudo
documents introduced decreases; thus, the amount of distortion de-
creases. Consequently, when we have small group sizes leading to a
small difference between𝑚𝑖𝑛 and𝑚𝑎𝑥 , a higher number of pseudo
documents are generated. Note that the more pseudo documents
the embedding introduces, the more distortion it introduces while it
increases the robustness.

5 SECURITY AND ROBUSTNESS ANALYSIS
In our security analysis (sketch), we assume that a probabilistic
polynomial time (PPT) attacker 1) knows how our algorithms work,
following a no-security-by-obscurity principle [18], and 2) cannot
break the security of underlying algorithms such as hash function,
pseudorandom generator.

We assume that all the underlying algorithms used as building
blocks are secure by their definitions [16]. The attacker has full

Data Economy Workshop (DE ’23), June 18, 2023, Seattle, USA Hristov et al.

Figure 6: Impact of parameters on the amount of watermarked
documents.

access to the public (watermarked) database, which might also be
just a part of the full database. The attacker also has access only
to one watermarked copy of the database and does not have access
to the original database or the key for the watermark. An attacker
cannot check the watermark, as in an oracle attack, to check if the
watermark is still valid [8]. Finally, it is assumed that an attacker
does not modify the primary keys.

5.1 Guessing Attack
In the guessing attack, a PPT adversary tries to guess the watermark
by exploiting the private key used to embed and determining the
pseudo documents (i.e., nodes introduced to the graph database after
embedding) introduced by the watermarking scheme. By doing so,
the attacker can perform other attacks such as watermark removal.
Assuming that the hash function is collision-resistant, K is random,
the pseudo documents generations are random, and the link is not
predictable to the attacker, the success rate of the guessing attack
is negligible. Since the pseudo documents are indistinguishable
from the real documents, the attacker cannot determine the pseudo
documents to remove them from the watermarked database in order
to make the extraction algorithm fail (i.e., returning reject while the
database was indeed watermarked by the owner).

5.2 Deletion attack
For the deletion attack, an attacker randomly picks some documents
and deletes them from the watermarked database. The attacker tries
to delete the documents hoping that the watermark extraction will
fail (i.e., returning reject). We simulated such an attack and then run
the watermark extraction algorithm to determine if the attack was
successful. For the percentage of successful detection attacks, the
following formula is used:

%𝑠𝑢𝑐 =
∑︁

𝐴𝑢 ∈𝐴

𝐴𝑢

𝐴
, (2)

where 𝐴𝑢 denotes the number of unsuccessful attacks and 𝐴 denotes
the number of attacks performed. The robustness of the watermark
is tested with a deletion attack. First, a script, acting as a malicious
actor, randomly picks nodes and deletes them. After that, a verifi-
cation script is run to determine the amount of watermarked nodes
that were deleted or not detected. This sequence continues until the
verification script does not detect the watermark anymore.

Figure 7: Deletion attack results.

Figure 7 shows that the watermark can withstand around 40%
of documents being deleted before becoming undetectable. This
result is for the range between 0 and 1000 watermarked documents.
As shown, 20% of the watermarked pseudo nodes/documents are
detected even if more than 80% of the nodes are deleted.

6 CONCLUSION AND FUTURE WORK
In this work, we proposed a new watermarking technique for graph
databases inspired by Zhuang et al. [28]. Different from their tech-
nique, our solution does not suffer from heavy optimizations. We
overcome their limitation due to heavy optimization by using a ran-
domized approach during watermarking embedding. Due to random-
ization, the attacker cannot identify the pseudo document inserted
into the database during embedding. We also implemented our tech-
nique to evaluate its performance using a real-world database. We
analyzed that our technique is secure and robust against a range of
attacks.

In our ongoing work, we are analyzing the robustness of our
technique against more advanced attack scenarios such as insertion,
update, and modification attacks. We are also working on automating
the manual analysis for the watermarking process and parameter
selection. We plan to compare our technique to other graph database
techniques in terms of performance, usability, and robustness. We are
also interested in applying our technique to other relational databases
since many of them can be represented as a graph.

ACKNOWLEDGMENTS
Our work was supported by the European Union’s HORIZON project
DataBri-X (101070069).

Graph Database Watermarking Using Pseudo-Nodes Data Economy Workshop (DE ’23), June 18, 2023, Seattle, USA

REFERENCES
[1] 2023. The professional client, IDE and GUI for MongoDB. https://studio3t.com/
[2] Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet.

2018. Turning Your Weakness Into a Strength: Watermarking Deep Neural Net-
works by Backdooring. In USENIX Security, William Enck and Adrienne Porter
Felt (Eds.). 1615–1631. https://www.usenix.org/conference/usenixsecurity18/
presentation/adi

[3] Rakesh Agrawal and Jerry Kiernan. 2002. Watermarking Relational Databases.
In International Conference on Very Large Data Bases, VLDB. 155–166. https:
//doi.org/10.1016/B978-155860869-6/50022-6

[4] Ashima Anand and Amit Kumar Singh. 2021. Watermarking techniques for
medical data authentication: a survey. Multim. Tools Appl. 80, 20 (2021), 30165–
30197. https://doi.org/10.1007/s11042-020-08801-0

[5] Md. Asikuzzaman and Mark R. Pickering. 2018. An Overview of Digital Video
Watermarking. IEEE Trans. Circuits Syst. Video Technol. 28, 9 (2018), 2131–2153.
https://doi.org/10.1109/TCSVT.2017.2712162

[6] Erman Ayday, Emre Yilmaz, and Arif Yilmaz. 2019. Robust Optimization-Based
Watermarking Scheme for Sequential Data. In 22nd International Symposium on
Research in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang District,
Beijing, China, September 23-25, 2019. USENIX Association, 323–336.

[7] Malgorzata Bach and Aleksandra Werner. 2014. Standardization of NoSQL
Database Languages. In Beyond Databases, Architectures, and Structures (Com-
munications in Computer and Information Science, Vol. 424), Stanislaw Koziel-
ski, Dariusz Mrozek, Pawel Kasprowski, Bozena Malysiak-Mrozek, and Daniel
Kostrzewa (Eds.). 50–60. https://doi.org/10.1007/978-3-319-06932-6_6

[8] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato, Gra-
ham Steel, and Joe-Kai Tsay. 2012. Efficient Padding Oracle Attacks on Cryp-
tographic Hardware. In Advances in Cryptology - CRYPTO, Vol. 7417. 608–625.
https://doi.org/10.1007/978-3-642-32009-5_36

[9] Christian S. Collberg and Clark D. Thomborson. 2002. Watermarking, Tamper-
Proofing, and Obfuscation-Tools for Software Protection. IEEE Trans. Software
Eng. 28, 8 (2002), 735–746. https://doi.org/10.1109/TSE.2002.1027797

[10] Saad M. Darwish, Hosam A. Selim, and Mohamed M. El-Sherbiny. 2018. Dis-
tortion Free Database Watermarking System Based on Intelligent Mechanism for
Content Integrity and Ownership Control. J. Comput. 13, 9 (2018), 1053–1066.
https://doi.org/10.17706/jcp.13.9.1053-1066

[11] CFE Dr. Shannon Block. 2019. Why Amazon, Google, Netflix and Facebook
switched to nosql? https://www.linkedin.com/pulse/why-amazon-google-netflix-
facebook-switched-nosql-shannon-block-cfe

[12] Khaled Emam, Lucy Mosquera, Richard Hoptroff, and an O’Reilly
Media Company. Safari. 2020. Practical Synthetic Data Generation.
https://www.safaribooksonline.com/complete/auth0oauth2/&state=/library/
view//9781492072737/?ar

[13] Tsvetomir Hristov. [n.d.]. Graph Database Watermarker(BEP). https://github.
com/Elkozel/graph-database-watermaring-BEP

[14] Muhammad Kamran and Muddassar Farooq. 2018. A comprehensive survey of
watermarking relational databases research. arXiv preprint arXiv:1801.08271
(2018).

[15] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. 2021. A review on
genetic algorithm: past, present, and future. Multim. Tools Appl. 80, 5 (2021),
8091–8126. https://doi.org/10.1007/s11042-020-10139-6

[16] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography,
Second Edition. CRC Press. https://www.crcpress.com/Introduction-to-Modern-
Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269

[17] Stefan. Katzenbeisser and Fabien A. P. Petitcolas. 2000. Information hiding
techniques for steganography and digital watermarking. Artech House, Boston.

[18] A Kerckhoffs. 1883. A. Kerckhoffs, la cryptographie militaire, Journal des Sci-
ences Militaires IX, 38 (1883). In Journal des sciences militaires.

[19] Vidhi Khanduja. 2016. Dynamic watermark injection in NoSQL databases. Jour-
nal of Computer Science Applications and Information Technology. Symbiosis
(2016), 1–5.

[20] Yingjiu Li and Robert Huijie Deng. 2006. Publicly verifiable ownership protection
for relational databases. In ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS. ACM, 78–89. https://doi.org/10.1145/1128817.
1128832

[21] William Lyon. [n.d.]. UK Companies Data. https://neo4j.com/graphgists/
35a813ba-ea10-4165-9065-84f8802cbae8/

[22] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux journal 239 (2014), 2.

[23] Arezou Soltani Panah, Ron G. van Schyndel, Timos K. Sellis, and Elisa Bertino.
2016. On the Properties of Non-Media Digital Watermarking: A Review of State
of the Art Techniques. IEEE Access 4 (2016), 2670–2704. https://doi.org/10.
1109/ACCESS.2016.2570812

[24] Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. 2008. Watermarking Re-
lational Databases Using Optimization-Based Techniques. IEEE Trans. Knowl.
Data Eng. 20, 1 (2008), 116–129. https://doi.org/10.1109/TKDE.2007.190668

[25] Ta Minh Thanh, Nguyen Huu Thuy, and Ngoc-Tu Huynh. 2018. Key-value
based data hiding method for NoSQL database. In International Conference on
Knowledge and Systems Engineering, KSE. IEEE, 193–197. https://doi.org/10.
1109/KSE.2018.8573334

[26] Ramarathnam Venkatesan, Vijay V. Vazirani, and Saurabh Sinha. 2001. A Graph
Theoretic Approach to Software Watermarking. In Information Hiding, Interna-
tional Workshop, IHW, Vol. 2137. Springer, 157–168. https://doi.org/10.1007/3-
540-45496-9_12

[27] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang, Wenbo Zhou,
Hao Cui, and Nenghai Yu. 2020. Model Watermarking for Image Processing
Networks. In Conference on Artificial Intelligence, AAAI. 12805–12812. https:
//ojs.aaai.org/index.php/AAAI/article/view/6976

[28] Xiaodan Zhuang, Xi Luo, and Letian He. 2022. Document Database Watermark
Algorithm Based on Connected Graph. In 2022 International Conference on
Computing, Communication, Perception and Quantum Technology (CCPQT).
212–218. https://doi.org/10.1109/CCPQT56151.2022.00044

[29] Devriş İşler, Elisa Cabana, and Nikolaos Laoutaris. 2022. FreqyWM: Frequency
Watermarking for the New Data Economy. https://dspace.networks.imdea.org/
handle/20.500.12761/1626 (2022).

https://studio3t.com/
https://www.usenix.org/conference/usenixsecurity18/presentation/adi
https://www.usenix.org/conference/usenixsecurity18/presentation/adi
https://doi.org/10.1016/B978-155860869-6/50022-6
https://doi.org/10.1016/B978-155860869-6/50022-6
https://doi.org/10.1007/s11042-020-08801-0
https://doi.org/10.1109/TCSVT.2017.2712162
https://doi.org/10.1007/978-3-319-06932-6_6
https://doi.org/10.1007/978-3-642-32009-5_36
https://doi.org/10.1109/TSE.2002.1027797
https://doi.org/10.17706/jcp.13.9.1053-1066
https://www.linkedin.com/pulse/why-amazon-google-netflix-facebook-switched-nosql-shannon-block-cfe
https://www.linkedin.com/pulse/why-amazon-google-netflix-facebook-switched-nosql-shannon-block-cfe
https://www.safaribooksonline.com/complete/auth0oauth2/&state=/library/view//9781492072737/?ar
https://www.safaribooksonline.com/complete/auth0oauth2/&state=/library/view//9781492072737/?ar
https://github.com/Elkozel/graph-database-watermaring-BEP
https://github.com/Elkozel/graph-database-watermaring-BEP
https://doi.org/10.1007/s11042-020-10139-6
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://doi.org/10.1145/1128817.1128832
https://doi.org/10.1145/1128817.1128832
https://neo4j.com/graphgists/35a813ba-ea10-4165-9065-84f8802cbae8/
https://neo4j.com/graphgists/35a813ba-ea10-4165-9065-84f8802cbae8/
https://doi.org/10.1109/ACCESS.2016.2570812
https://doi.org/10.1109/ACCESS.2016.2570812
https://doi.org/10.1109/TKDE.2007.190668
https://doi.org/10.1109/KSE.2018.8573334
https://doi.org/10.1109/KSE.2018.8573334
https://doi.org/10.1007/3-540-45496-9_12
https://doi.org/10.1007/3-540-45496-9_12
https://ojs.aaai.org/index.php/AAAI/article/view/6976
https://ojs.aaai.org/index.php/AAAI/article/view/6976
https://doi.org/10.1109/CCPQT56151.2022.00044
https://dspace.networks.imdea.org/handle/20.500.12761/1626
https://dspace.networks.imdea.org/handle/20.500.12761/1626

	Abstract
	1 Introduction
	2 Related Work
	3 Graph Database Watermarking
	3.1 Background
	3.2 Overview
	3.3 Embedding
	3.4 Extracting

	4 Experimental Setup and Results
	4.1 Experimental Setup
	4.2 Results

	5 Security and Robustness Analysis
	5.1 Guessing Attack
	5.2 Deletion attack

	6 Conclusion and Future Work
	Acknowledgments
	References

