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Abstract—We present a Federated Learning (FL) based solu-
tion for building a distributed classifier capable of detecting URLs
containing sensitive content, i.e., content related to categories such
as health, political beliefs, sexual orientation, etc. Although such
a classifier addresses the limitations of previous offline/centralised
classifiers, it is still vulnerable to poisoning attacks from malicious
users that may attempt to reduce the accuracy for benign users
by disseminating faulty model updates. To guard against this, we
develop a robust aggregation scheme based on subjective logic
and residual-based attack detection. Employing a combination of
theoretical analysis, trace-driven simulation, as well as experi-
mental validation with a prototype and real users, we show that
our classifier can detect sensitive content with high accuracy,
learn new labels fast, and remain robust in view of poisoning
attacks from malicious users, as well as imperfect input from
non-malicious ones.

I. INTRODUCTION

Most people are not aware that tracking services are present
even on sensitive web domains. Being tracked on a cancer
discussion forum, a dating site, or a news site with non-
mainstream political affinity can be considered an “elephant
in the room” when it comes to the anxieties that many
people have about their online privacy. The General Data
Protection Regulation (GDPR) [33] puts specific restrictions
on the collection and processing of sensitive personal data
“revealing racial or ethnic origin, political opinions, religious
or philosophical beliefs, or trade union membership, also
genetic data, biometric data for the purpose of uniquely
identifying a natural person, data concerning health or data
concerning a natural persons sex life or sexual orientation”.
So do other public bodies around the world, e.g. in California
(California Consumer Privacy Act (CCPA) [34]), Canada [35],
Israel [36], Japan [37], and Australia [38].

In a recent paper, Matic et al. [4] showed how to train a
classifier for detecting whether the content of a URL relates to
any of the above-mentioned sensitive categories. The classifier
was trained using 156 thousand sensitive URLs obtained from
the Curlie [32] crowdsourced web taxonomy project. Despite

the demonstrated high accuracy, this method has limitations
that stem from being centralised and tied to a fixed training
set. The first limitation means that the method cannot be used
“as is” to drive a privacy-preserving distributed classification
system. The second limitation implies that it is not straight-
forward to cover new labels related to yet unseen sensitive
content. For example, in their work the Health category could
be classified with accuracy greater than 90%. However, the
training labels obtained from Curlie in 2020 did not include
any labels related to the COVID-19 pandemic. Therefore, as
will be shown later, this classifier classifies COVID-19 related
sites with only 53.13% accuracy.

Federated Learning (FL) [5], [13] offers a natural solution
to the above two mentioned limitations, namely, centralized
training and training for a fixed training set. FL allows
different clients to train their classification models locally
without revealing new or existing sensitive URLs that they
label, while collaborating by sharing model updates that can
be combined to build a superior global classification model.
FL has proved its value in a slew of real-world applications,
ranging from mobile computing [46]–[48] to health and med-
ical applications [49]–[51]. However, due to its very nature,
FL is vulnerable to so-called poisoning attacks [12], [26]
mounted by malicious clients that may intentionally train their
local models with faulty labels or backdoor patterns, and then
disseminate the resulting updates with the intention of reducing
the classification accuracy for other benign clients. State-of-
the-art approaches for defending against such attacks depend
on robust aggregation [8], [15], [16], [20], [27], [60] which,
as we will demonstrate later, are slow to converge, thereby
making them impractical for the sensitive-content classification
problem that we tackle in this paper.

Our Contributions: In this paper, we employ FL for sensitive
content classification. We show how to develop a robust FL
method for classifying arbitrary URLs that may contain GDPR
sensitive content. Such a FL-based solution allows building a
distributed classifier that can be offered to end-users in the
form of a web browser extension in order to: (i) warn them
before and while they navigate into such websites, especially
when they are populated with trackers, and (ii) allow them
to contribute new labels, e.g., health-related websites about
COVID-19, and thus keeping the classifier always up-to-date.
To the best of our knowledge this method represents the first
use of FL for such task.
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Our second major contribution is the development of a
reputation score for protecting our FL-based solution from
poisoning attacks [12], [26]. Our approach is based on a
novel combination of subjective logic [3] with residual-based
attack detection. Our third contribution is the development
of an extensive theoretical and experimental performance
evaluation framework for studying the accuracy, convergence,
and resilience to attacks of our proposed mechanism. Our
final contribution is the implementation of our methods in a
prototype system called EITR (standing for “Elephant In the
Room” of privacy) and our preliminary experimental validation
with real users tasked to provide fresh labels for the accurate
classification of COVID-19 related URLs.

Our findings: Using a combination of theoretical analysis,
simulation, and experimentation with real users, we:

• Demonstrate experimentally that our FL-based classifier
achieves comparable accuracy with the centralised one pre-
sented in [4].
• Prove analytically that under data poisoning attacks, our
reputation-based robust aggregation built around subjective
logic, converges to a near-optimal solution of the corre-
sponding Byzantine fault tolerance problem under standard
assumptions. The resulting performance gap is determined by
the percentage of malicious users.
• Evaluate experimentally our solution against state-of-the-
art algorithms such as Federated Averaging [5], Coordinate-
wise median [20], Trimmed-mean [20], FoolsGold [8], [15],
Residual-based re-weighting [16] and FLTrust [60], and show
that our algorithm is robust under Byzantine attacks by using
different real-world datasets. We demonstrate that our solution
outperforms these popular solutions in terms of convergence
speed by a factor ranging from 1.6× to 2.4× while achieving
the same or better accuracy. Furthermore, our method yields
the most consistent and lowest Attack Success Rate (ASR),
with at least 72.3% average improvement against all other
methods.
• Validate using our EITR browser extension that our FL-
based solution can quickly learn to classify health-related sites
about COVID-19, even in view of noisy/inconsistent input
provided by real users.

The remainder of the article is structured as follows:
Section II introduces the background for our topic. Section III
presents our reputations scheme for FL-based sensitive content
classification, as well as its theoretical analysis and guarantees.
Section IV covers our extensive performance evaluation against
the state-of-the-art and Section V some preliminary results
from our EITR browser extension. Section VI concludes the
paper and points to on-going and future work including the
generalization of our method to other topics.

II. BACKGROUND

A. A Centralised Offline Classifier for Sensitive Content

Matic et al. [4] have shown how to develop a text classifier
able to detect URLs that contain sensitive content. This clas-
sifier is centralised and was developed in order to conduct
a one-off offline study aimed at estimating the percentage
of the web that includes such content. Despite achieving an
accuracy of at least 88%, utilising a high-quality training set
meticulously collected by filtering the Curlie web-taxonomy

project [32], this classifier cannot be used “as is” to protect real
users visiting sensitive URLs populated by tracking services.

B. Challenges in Developing a Practical Classifier for Users

From offline to online: The classifier in [4] was trained using
a dataset of 156 thousand sensitive URLs. Despite being the
largest dataset of its type in recent literature, this dataset is
static and thus represents sensitive topics up to the time of its
collection. This does not mean, of course, that a new classifier
trained with this data would never be able to accurately classify
new URLs pertaining to those sensitive categories. This owes
to the fact that categories such as Health, involve content
and terms that do not change radically with time. Of course,
new types of sensitive content may appear that, for whatever
reason, may not be so accurately classified using features
extracted from past content of the same sensitive category.
Content pertaining to the recent COVID-19 pandemic is such
an example. Although the Health category had 74,764 URLs
in the training set of [4] which lead to a classification accuracy
of 88% for Health, as we will see later in Figure 14 middle
of Section V-C, the classifier of [4] classifies accurately as
Health only 53.13% of the COVID-19 URLs with which we
tested it. This should not come as a surprise since the dataset
of [4] corresponds to content generated before the first months
of 2020, during which COVID-19 was not yet a popular topic.
Therefore, we need to find a way to update an existing classifier
so that it remains accurate as new sensitive content appears.

From centralised to distributed: A natural way to keep a
classifier up-to-date is to ask end-users to label new sensitive
URLs as they encounter them. End-users can report back to
a centralised server such URLs which can then be used to
retrain the classification model. This, however, entails obvious
privacy challenges of “Catch-22” nature, since to protect users
by warning them about the presence of trackers on sensitive
URLs, they would first be required to report to a potentially
untrusted centralised server that they visit such URLs. Even
by employing some methods for data scarcity, e.g., semi-
supervised learning, the manual labelling from users remains
sensitive and may be harmed by the untrusted server. Federated
Learning, as already mentioned, is a promising solution for
avoiding the above Catch22 by conducting a distributed, albeit,
privacy-preserving, model training. In an FL approach to our
problem, users would label new URLs locally, e.g., a COVID-
19 URL as Health, retrain the classifier model locally, and
then send model updates, not labelled data, to a centralised
server that collects such updates from all users, compiles and
redistributes the new version of the model back to them. In
Section III we show how to develop a distributed version of the
sensitive topic classifier of [4] using FL. The trade-off of using
FL, is that the distributed learning group becomes vulnerable
to attacks, such as “label-flipping” poisoning attacks discussed
in Section IV. This paper develops a reputation scheme for
mitigating such attacks. Other types of attacks and measures
for preserving the privacy of users that participate in a FL-
based classification system for sensitive content are discussed
in Section VI.

C. Related Work

Privacy preserving crowdsourcing: Similar challenges to the
ones discussed in the previous paragraph have been faced in
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services like the Price $heriff [54] and eyeWnder [55] that
have used crowdsourcing to detect online price discrimina-
tion and targeted advertising, respectively. Secure Multi-Party
Computation (SMPC) techniques such as private k-means [56]
are used to allow end-users to send data in a centralised server
in a privacy-preserving manner. The centralised computation
performed by Price $heriff and eyeWnder is not of ML nature,
thus leaving data anonymisation as the main challenge, for
which SMPC is a good fit. Classifying content as sensitive or
not is a more complex ML-based algorithm for which FL is a
more natural solution than SMPC.
General works on FL: FL [5], [13] is a compelling technique
for training large-scale distributed machine learning models
while maintaining security and privacy. The motivation for FL
is that local training data is always kept by the clients and the
server has no access to the data. Due to this benefit that alle-
viates privacy concerns, several corporations have utilised FL
in real world services. In mobile devices, FL is used to predict
keyboard input [46], human mobility [47] and behaviour for
the Internet of Things [48]. FL is also applied in healthcare to
predict diseases [49], [50], detect patient similarity [51] while
overcoming any privacy constrains. For the classification, FL
is not only implemented for image classification [52] but also
text classification [53].
Resilience to poisoning attacks: Owing to its nature [12],
[26], FL is vulnerable to poisoning attacks, such as label
flipping [16] and backdoor attacks [12]. Therefore, several
defence methods have been developed [8], [15], [16], [20].
While these state-of-the-art approaches perform excellently in
some scenarios, they are not without limitations. First, they
are unsuitable for our sensitive content classification, which
necessitates that a classifier responds very fast to “fresh”
sensitive information appearing on the Internet. In existing
methods, the primary objective is to achieve a high classi-
fication accuracy. This is achieved via statistical analysis of
client-supplied model updates and discarding of questionable
outliers before the aggregation stage. However, since the server
distrusts everyone by default, even if an honest client discovers
some fresh sensitive labels, its corresponding updates may be
discarded or assigned low weights, up until more clients start
discovering these labels. This leads to a slower learning rate
for new labels.

Second, recent studies [12], [26] have shown that existing
Byzantine-robust FL methods are still vulnerable to local
model poisoning since they are forgetful by not tracking in-
formation from previous aggregation rounds. Thus, an attacker
can efficiently mount an attack by spreading it across time [31].
For example, [22] recently showed that even after infinite
training epochs, any aggregation which is neglectful of the
past cannot converge to an efficient solution.

The preceding studies demonstrate the importance of incor-
porating clients’ previous long-term performance in evaluating
their trustworthiness. Few recent studies have considered this
approach [22], [60]. In [22], the authors propose leveraging
historical information for optimisation, but not for assessing
trustworthiness. In [60], a trust score is assigned to each client
model update according to the cosine similarity between the
client’s and server’s model updates, which is trained on the
server’s root dataset (details in Section IV-A3). However, it
is impractical for a server to obtain additional data, such
as a root dataset, in order to train a server-side model. In

TABLE I: Notation
Abbreviation Description
M the total number of clients
N the number of parameters of global model
Q the number of samples of each client
T the total number of iterations
wt

i,n the n-th parameter from client i in t iteration
xt
i,n the ranking of wt

i,n in wt
n

An, Bn the slope and intercept of repeated median linear regression
eti,n the normalised residual of the n-th parameter from client i in t iteration

addition, because the server collects root data only once and
does not update it throughout the training process, when new
types of content emerge over time, the root data may become
stale thereby harming the classifier’s performance. Other recent
studies employ spectral analysis [63], differential privacy [65],
and deep model inspection [66] to guard against poisoning
attacks, but, again, they do not use historical information to
assess the reliability of clients. To measure client trustworthi-
ness without collecting additional data at the server, in the next
sections we show how to design a robust aggregation method
to generate reputation automatically based on the historical
behaviours of clients, which is a more realistic approach for a
real FL-based decentralised system implemented as a browser
extension for clients.

III. A ROBUST FL METHOD FOR CLASSIFYING
SENSITIVE CONTENT ON THE WEB

In this section, we first show how to build an FL-based
classifier for sensitive content. Then we design a reputation
score for protecting against poisoning attacks. We analyse
theoretically the combined FL/reputation-based solution and
establish convergence and accuracy guarantees under common
operating assumptions.

A. FL Framework for Classifying Sensitive Content

Table I presents the notation that we use in the remainder of
the paper. In FL, clients provide the server updated parameters
from their local model, which the server aggregates to build
the global model M .

Suppose we have M clients participating in our classi-
fication training task and the dataset D =

⋃M
i=1Di, where

Di ∼ Xi(µi, σ
2
i ) denotes the local data of client i from non-

independent and non-identically (Non-IID) distribution Xi with
the mean µi and standard deviation σi. In our task, the clients’
data is the textual content of URLs stripped of HTML tags. The
objective function of FL, L : Rd → R which is the negative
log likelihood loss in our task, can be described as

L(w) = ED∼X [l(w;D)]
where l(w;D) is the cost function of parameter w ∈ W ⊆ Rd.
Here we assumeW is a compact convex domain with diameter
d. Therefore, the task becomes

w∗ = argmin
w∈W

L(w)

To find the optimal w∗, we employ Stochastic Gradient De-
scent (SGD) to optimise the objective function.

During the broadcast phase, the server broadcasts the
classification task and training instructions to clients. Then,
the clients apply the following standard pre-processing steps
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Fig. 1: Accuracy of FL classifiers and centralised classifiers in
Health, Religion and all category.

on the webpage content, that is, transformation of all let-
ters in lowercase and the removal of stop words. Next, the
clients extract the top one thousand features utilising the
Term Frequency-Inverse Document Frequency (TF-IDF) [58]
as in [4]. At iteration t, the client i receives the current global
model Mglobal and then following the training instructions
from server, trains the local model on its training data Di and
optimises wt

i = argminw Li(w
t
i) by using SGD:

wt
i ← wt−1

i − r
∂Li(w

t−1
i )

∂w

where Li(w) := EDi∼X [l(w;Di)] =
1
Qi

∑Qi

j=1 l(w;D
j
i ), D

j
i

and Qi means the j-th sample and the number of samples of
the client i respectively, and r is the learning rate.

In every iteration, after finishing the training process the
clients send back their local updates to the server. Then, the
server computes a new global model update by combining
the local model updates via an aggregation method AGG as
follows:

wt = AGG
({

wt
i

}M
i=1

)
Here we utilise the basic aggregation method (FedAvg) [5],
which uses the fraction of each client’s training sample size in
total training samples as the average weights:

wt =

M∑
i=1

Qi

Q
wt

i

We introduce other robust aggregation methods in the next
subsection. Subsequently, the server uses the global model
update to renew the global model Mglobal.

Using the above FL-based framework we first evaluate how
the number of users in the system affects the average accuracy
of the classifier. The results for the sensitive categories, Health
and Religion, as well as the overall average accuracy (Avg-
ACC) are depicted in Figure 1. A first observation is that
when a fixed size dataset is divided into multiple segments
and distributed to more clients, the model’s accuracy decreases
since each client has less data for training. Compared to the
centralised classifier, using the same data, the accuracy of the
FL classifier is slightly lower, which is expected when the
training is distributed to a larger number of clients. Overall,
we observe that the average accuracy difference between the
FL and the centralised classifier is 5.76%, and this remains
steady as the number of clients grows. In addition, Looking
at the different sensitive categories (Health and Religion), we
see the FL-based classifier achieves an accuracy very close to

Fig. 2: Overview of reputation-based aggregation algorithm.

the corresponding one of the centralised classifier for these
categories (on average 0.8533 vs. 0.88 and 0.9366 vs. 0.94,
respectively).

B. A Reputation score for Thwarting Poisoning Attacks

Figure 2 shows an overview of our reputation-based ag-
gregation algorithm consisting of three components: the attack
detection scheme, the reputation model, and the aggregation
module. The attack detection scheme re-scales and rectifies
damaging updates received from clients. Then, the reputation
model calculates each client’s reputation based on their past
detection results. Finally, the aggregation module computes the
global model by averaging the updates of the clients using their
reputation scores as weights. We detail each component in the
following subsections.

1) Attack Detection Scheme: Our attack detection scheme
aims to reduce the impact of suspicious updates by identifying
them and applying a rescaling algorithm. At every iteration,
when model updates from clients arrive at the server, we apply
Algorithm 1 there to rescale the range of values for those
parameters in the updates.

This restriction on the value range aims not only to min-
imise the impact of abnormal updates from attackers but also to
limit the slope for the repeat median regression. Considering
the n-th parameter in round t from all the participants, we
calculate the standard deviation σ(wt

i,n) of this series. Then
we sort them in ascending order and determine the range
by subtracting the lowest value from the highest one. If the
result is above the threshold ϖ, we rescale the highest and
lowest value by deducting and adding its standard deviation
respectively to further bound their range.

Then, a robust regression [14] is carried out to identify
outliers among the updates in the current round. Outlier detec-
tion is a well-established topic in statistics. Robust regression
methods often handle outliers by using the median estimators.
Median-based aggregation methods have a rich and longstand-
ing history in the area of robust statistics [21]. However, the
methods developed by the traditional robust statistics can only
withstand a small fraction of Byzantine clients, resulting in
a low “breakdown point” [59]. Different from many other
variations of the univariate median, the repeated median [14]
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Algorithm 1: Rescale(w)

Input :
{
wt

i,n

}
← Local Model parameters in

round t
Output:

{
wt

i,n

}
with range of value less than ϖ

1 for n← 1 to N do
2 // Determine the maximum range

3 Rm = maxwt
i,n−minwt

i,n = w
t,(Max)
i,n −wt,(Min)

i,n

4 while Rm > ϖ do
5 // Rescale range based on standard

deviation.

6 w
t,(Max)
i,n := w

t,(Max)
i,n − σ(wt

i,n);
7 w

t,(Min)
i,n := w

t,(Min)
i,n + σ(wt

i,n);
8 // Updated Rm.
9 Rm = maxwt

i,n −minwt
i,n =

w
t,(Max)
i,n − w

t,(Min)
i,n

10 end while
11 end for

is impervious to atypical points even when their percentage is
nearly 50%. The repeated median is defined as a modified U-
statistic and the concept behind it is to utilise a succession
of partial medians for computing approximation τ̂ of the
parameter τ : For k ∈ N, the value of parameter τ(z1, · · · , zk)
is determines by subset of k data points z1, · · · , zk.

τ̂ = median
z1

{
median
z2 /∈{z1}

{
median

zk /∈{z1,··· ,zk−1}
τ(z1, · · · , zk)

}}
(1)

In our case, the intercept Â and slop B̂ are estimated by
repeated median as bellow:

B̂n = median
i

{
median

i ̸=j
{Bn(i, j)}

}
(2)

Ân = median
i

{
wi,n − B̂nxi,n

}
(3)

where Bn(i, j) =
wj,n−wi,n

xj,n−xi,n
, xi,n represents the index of wi,n

in wn which is sorted in ascending order.

Next, we employ the IRLS scheme [10] to generate each
parameter’s confidence score sti,n based on the normalised
residual from repeated median regression, which is also utilised
in a residual-based aggregation method [16]:

sti,n =

√
1− diag(Ht

n)

eti,n
Ψ

(
eti,n√

1− diag(Ht
n)

)
(4)

where confidence interval Ψ(x):

Ψ(x) = max{−λ
√
2/M,min(λ

√
2/M, x)}

and the hat matrix Ht
n:

Ht
n = xt

n(x
tT

n xt
n)

−1xtT

n

with eti,n =
25(M−1)(wt

i,n−B̂nx
t
i,n−Ân)

37(M+4)median
i

(|wt
i,n−B̂nxt

i,n−Ân|)
.

The distance between the point and the robust line is
described by the confidence score derived from the normalised
residual, which can be used to evaluate if the point is anoma-
lous. Following the computation of the parameter’s confidence
score, and in light of the fact that some attackers want to

generate updates with abnormal magnitudes in order to boost
the damage, a useful protection is to identify low confidence
values based on a threshold δ. Once the server recognises an
update wt

i,n of the client i with confidence values less than δ,
rather than altering this update to the repeat median estimation,
our technique replaces it with the median of wt

n, as follows:

wt
i,n =

{
wt

i,n if sti,n > δ

median
i

{
wt

i,n

}
if sti,n ≤ δ

(5)

With the above, not only we bound the range of updates,
but also improve the aggregation by introducing a robustness
estimator.

2) Reputation Model: During the aggregation phase in FL,
we use a subjective logic model to produce client reputation
scores. The subjective logic model is a subset of probabilistic
logic that depicts probability values of belief and disbelief
as degrees of uncertainty [3]. In the subjective logic model,
reputation score Rt

i for client i in t iteration correlates to a sub-
jective belief in the dependability of the client’s behaviour [39],
as measured by the belief metric opinion τ ti [9]. An opinion
is comprised of three elements: belief bti, disbelief dti and
uncertainty ut

i, with restrictions that bti + dti + ut
i = 1 and

bti, d
t
i, u

t
i ∈ [0, 1]. The reputation score may be calculated as

the expected value of an opinion E(τ ti ) which can be regarded
as the degree of trustworthiness in client i. As a result, the
value of the client’s reputation is defined as follows:

Rt
i = E(τ ti ) = bti + aut

i (6)
where a ∈ [0, 1] denotes the prior probability in the absence of
belief, which reflects the fraction of uncertainty that may be
converted to belief. On the other side, distinct observations
determined by the rectification phase in our Algorithm 2
are used to count belief, disbelief, and uncertainty opinions.
The positive observation denoted by P t

i indicates that the
update wt

i,n is accepted (sti,n > δ), whereas a negative
observation denoted by N t

i indicates that the update is rejected
(sti,n ≤ δ). As a consequence, the positive observations boost
the client’s reputation, and vice versa. To penalise the negative
observations from the unreliable updates, a higher weight η is
assigned to negative observations than the weight κ to positive
observations with constrain η + κ = 1. Therefore, in Beta
distribution below:

Beta(p|α, β) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (7)

with the constraints 0 ≤ x ≤ 1, parameters α > 0, β > 0, and
x ̸= 0 if α < 1 and x ̸= 1 if β < 1. The parameters α and β
that represent positive and negative observations respectively,
can be expressed as below{

α = κP t
i +Wa

β = ηN t
i +W (1− a)

(8)

where W is the non-information prior weight and the default
value is 2 [3].

As a consequence, the expected value of Beta distribution,
which also stands for reputation value, can be calculated as
follows:

E(Beta(p|α, β)) = α

α+ β
=

κP t
i +Wa

κP t
i + ηN t

i +W
= Rt

i (9)

Based on (6) and (9), we can derive
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Fig. 3: The decay of reputation score in Client (X) with X
model parameters when they (a) attack once at 3rd iteration
and (b) attack continuously at and after the 3rd iteration.


bti =

κP t
i

κP t
i +ηNt

i+W

dti =
ηNt

i

κP t
i +ηNt

i+W

ut
i =

W
κP t

i +ηNt
i+W

(10)

In addition, in order to take the client’s historical reputation
values in previous rounds into consideration, a time decay
mechanism is included to lower the relevance of past perfor-
mances without disregarding their influence. In other words,
the reputation value from the most recent iteration contributes
the most to the reputation model. We use exponential time
decay in our model, as shown below:

θj,t = exp(−c(t− j)) (11)
where ∃c > 0, j ∈ [s̃, t], s̃ = max (t− s, 0). We include a
sliding window with a window length s that allows us to get
a reputation for a certain time interval rather than the entire
training procedure. We remove expired tuples with timestamps
outside the window period during computation since they
cannot provide meaningful information for the reputation.
Hence, the final reputation score R̃t

i can be expressed as:

R̃t
i =

∑t
j=s̃ θj,tR

j
i∑t

j=s̃ θj,t
(12)

To demonstrate how the reputation model evolves, we
consider four scenarios where each client: (i) only attacks once
at the same iteration, (ii) attacks continuously after launching
an attack at the same iteration, (iii) only attacks once at
different iteration, (iv) attacks continuously after launching an
attack at different iteration. Here, clients conduct attacks as
described in Section IV-A2 by utilising polluted data while
training the local model, whereas the server uses our attack
detection mechanism to identify these attacks.

Figure 3 displays the first two scenarios (i)-Figure 3a
and (ii)-Figure 3b, respectively with Client X , who has X
parameters in their local models, under single and continuous
attack. In Figure 3a, all of the clients only attack once at
the third iteration. When they start attacking, their reputation
score plummets dramatically. In both scenarios, we observe the
client who has more parameters has a larger relative decline in
reputation score. This is also compatible with Corollary 1 in
the Section III-C, that is, increasing the number of parameters
N in the global model results in a lower error rate.

Figure 4 shows the last two scenarios (iii) and (iv) re-
spectively with clients, who have 20 parameters in their local
models, under single and continuous attack. In Figure 4a,
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Fig. 4: The decay of reputation score in Client X with same
model parameters when they (a) attack once at X iteration and
(b) attack continuously after starting to attack at X iteration.
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Fig. 5: The decay of reputation score in (left) Client with X
model parameters when they attack at 10, 50 and 90 iteration;
(right) Client X with 1 million parameters when they attack
at 10 and 10 +X iteration.

Client X only launches an attack at X iteration. We observe
that only one attack would lead to at least a 25.11% relative
decrease in reputation score. In Figure 4b, Client X launches
an attack at X iteration and keeps attacking in the following
iterations. We observe in the end that 80% of their reputation
scores are below 0.5, which is approximately half of the
reputation score of honest clients, implying that the damage
that they can inflict throughout the aggregation process is
considerably decreased.

In addition, we consider a scenario in which an attacker
spreads out the poisoning over a longer time duration, while
using a higher number of model parameters. Figure 5 (left)
depicts an attack over 40 iterations under different parameter
sizes. Figure 5 (right) depicts an attack with 1 million param-
eters repeating every 50 to 80 iterations. These figures show
that even if attackers spread our poisoning over multiple iter-
ations and then try to recover their reputation score by acting
benignly, our detection scheme can still identify them. This
is because our attack detection and reputation schemes work
in sequence. The attack detection scheme detects malicious
updates without considering any reputation scores and rectifies
them to mitigate damage. Then, the reputation scheme modifies
the reputation scores based on the detection results. Also,
attackers that employ a higher number of model parameters
suffer a slightly higher reduction of reputation, which is
consistent with Corollary 1.

3) Aggregation Algorithm: Algorithm 2 explains our ag-
gregation method based on the attack detection scheme and
subjective logic reputation model. First, the server sends all
clients the pre-trained global model with initial parameters.
Then, using their own data samples, clients train the global
model locally and send the trained parameters back to the
server. At this point, the server executes the attack detection
scheme. In round t, if the n-th update parameter wt

i,n from
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Algorithm 2: Aggregation Algorithm
Server :
Input : w0 ← Pretrained Model

κ,η,a,W ,c,s ← Reputation parameters
Output: Global model Mglobal with wT

1 for Iteration t← 1 to T do
2 // Broadcast global model to clients
3 send(wt−1);
4 // Wait until all updates arrive
5 receive(wt);
6 // Rescale parameters by Algorithm 1
7 w̄t ← Rescale(wt);
8 for n← 1 to N do
9 for i← 1 to M do

10 // Compute parameter confidence
11 sti,n = Eq 4(w̄t

i,n);
12 // Rectify abnormal parameters
13 wt

i,n := Eq 5 (sti,n, δ);
14 record (P t

i , N
t
i );

15 end for
16 end for
17 for i← 1 to M do
18 // Calculate reputation score

19 R̃t
i = Eq 12(P t

i , N t
i , κ, η, a, W , c, s);

20 end for
21 // Normalisation

22 R̄t ← Norm(R̃t);
23 for n← 1 to N do
24 // Update the parameters

25 wt
n :=

∑M
i=1

R̄t
i∑M

i=1 R̄t
i

wt
i,n;

26 end for
27 // Obtain parameters for global model
28 wt := [wt

1, · · · , wt
n];

29 end for
Client :

1 for Client i← 1 to M do in parallel
2 receive(wt−1);
3 // Train local model

4 wt
i ← wt−1

i − r
∂ℓi(w

t−1
i )

∂w ;
5 send(wt

i);
6 end forpar

the client i has been rectified by the attack detection scheme
in Section III-B1 to the median value, the server regards it
as a negative observation, whereas no rectification represents
a positive observation. Then, the server punishes the negative
observation by reducing the corresponding client’s reputation.
Both types of observations are accumulated through all the N
parameters of client i to obtain the reputation value R̃t

i in t
round for client i so as to all the other clients. The server would
conduct Min-Max normalisation to obtain R̄t after receiving
the reputation values R̃t of all the clients in t round.

After the server gets correction updates and the normalised
reputation of each client, it aggregates the updates using
average weighted reputation as the weights to get our global
model updates for the current iteration. In this way, even

over many training rounds, the attackers are still incapable
of shifting parameters notably from the target direction and
this ensures the quality of the resulting global model as will
be demonstrated experimentally and analytically next.

C. Theoretical Guarantees

We prove the convergence of our reputation-based aggrega-
tion method. Our major results are Theorem 1 and Corollary 1,
which state that convergence is guaranteed in bounded time.
Regarding the performance of our algorithm in terms of
metric average accuracy and convergence, we show that it is
consistent with our theoretical analysis. We start by stating our
assumptions, which are standard and common for such types
of results, and per recent works such as [7], [20].

Assumption 1 (Smoothness). The loss functions are L-
smooth, which means they are continuously differentiable and
their gradients are Lipschitz-continuous with Lipschitz con-
stant L > 0, whereas:

∀i ∈ N, ∀w1,w2 ∈ Rd

∥∇L(w1))−∇L(w2))∥2 ≤ L ∥w1 −w2∥2
∥∇ℓ(w1;D)−∇ℓ(w2;D)∥2 ≤ L∥w1 −w2∥2

Assumption 2 (Bounded Gradient). The expected square norm
of gradients ⊒ is bounded:

∀w ∈ Rd,∃Gw <∞,E ∥∇ℓ(w;D)∥22 ≤ Gw
Assumption 3 (Bounded Variance). The variance of gradients
w is bounded:
∀w ∈ Rd,∃Vw <∞,E ∥∇ℓ(w;D)− E(∇ℓ(w;D)∥22 ≤ Vw

Assumption 4 (Convexity). The loss function L(⊒) are µ-
strongly convex:

∃µ > 0,∀w1,w2 ∈ Rd,∇L(w∗) = 0

L(w1)− L(w2) ≥ ⟨∇L(w2),w1 −w2⟩+
µ

2
∥w1 −w2∥22

Suppose the percentage of attackers in the whole clients is
p, and all the clients in the system participant every training
iteration. r is the learning rate(r < 1

L ) and Q̂ = max {Qi}Mi=1.
∀w ∈ W , we denote

mi(w
t) =

{
∗ if i ∈ malicious clients

∇li(wt;D) if i ∈ honest clients
where ∗ stands for an arbitrary value from the malicious
clients.

m(wt) =

M∑
i=1

R̄imi(w
t)

s.t. R̄i =
R̃t

i∑M
i=1 R̃

t
i

,

M∑
i=1

R̄i = 1, R̄i ∈ (0, 1)

Consider the assumptions above and lemmas presented in
Appendix A, we have

Theorem 1. Under Assumptions 1, 2, 3 and 4, ∃ϵ > 0 that:√
d log(1 + Q̂MLDϵ)

M(1− p)
+ C

Gw√
Q̂

+ p ≤ 1

2
− ϵ (13)

After t rounds, Algorithm 2 converges with probability at least

1− ξ ∈
[
1− 4d

(1+Q̂MLυ)
d , 1

)
as
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∥∥wt −w∗∥∥
2
≤ (1− Lr)

t ∥∥w0 −w∗∥∥
2
+

√
N

L
∆1 +

1

L
∆2

(14)

where
∆1 =

M
(
ϖ(M − 1) + 2E√

Mδ

)
Wa(M−1)(κN+W )
(ηN+W )(κN+Wa) + 1

∆2 = 2
√
2

1

MQ̂
+

√
2

Q̂
DϵVw

√
d log(1 + Q̂MLυ)

M(1− p)
+ C

Gw√
Q̂

+ p


Dϵ :=

√
2π exp

(
1

2
(Φ(1− ϵ))

2

)
with Φ (·) being the cumulative distribution function of Wald
distribution.

Corollary 1. Continuing with Theorem 1, when the itera-
tions satisfy t ≥ 1

Lr log
(

L√
N∆1+∆2

∥∥w0 −w∗
∥∥
2

)
, ∃ξ ∈(

0, 4d

(1+Q̂MLυ)
d

]
, we have:

P
(∥∥wt −w∗∥∥

2
≤ 2

√
N

L
∆1 +

2

L
∆2

)
≥ 1− ξ

Remark 1. Due to

∆1 := O
(

ϖ

aκWN
+

1

κN
+

1√
MNδ

)
and

∆2 := O

 1

Q̂
+

p√
Q̂

+
1√
Q̂M


Based on Corollary 1, we achieve an error rate:

O

 ϖ

aκW
√
N

+
1

κ
√
N

+
1√
Mδ

+
1

Q̂
+

p√
Q̂

+
1√
Q̂M


we observe the experimental results in Figure 3 and 11 of

Sections III and IV respectively, when varying the parameters
of N , p, a and κ, results are consistent with this error rate.

Remark 2. Derived from the Corollary 1 and Remark 1, there
is a trade-off problem between convergence speed and error
rate according to the level of reward κ and punishment η from
the reputation model. This trade-off problem is mainly based
on the fact that if the model penalises the bad behaviours of
clients heavily, it would decrease their reputation dramatically
so the model would take a longer time to converge. On the
other hand, mitigating the punishment to increase the reward,
would lead to an increase in the error rate.

IV. PERFORMANCE EVALUATION

The objectives of our experimental evaluation are the
following: (a) evaluate the performance of our aggregation
method against other state-of-art robust aggregation methods,
(b) benchmark it in three different scenarios, namely, no attack,
label flipping attack, and backdoor attack, (c) do so using a
text based real-world dataset of sensitive categories from [4]
to which we will henceforth refer to as SURL, and finally
(d) show that our experimental result are consistent with our
previous theoretical analysis.

A. Experimental Setup

1) Datasets: The SURL dataset comes from a crowd-
sourcing taxonomy in the Curlie project [32], containing six
categories of URLs: five sensitive categories (Health, Politics,
Religion, Sexual Orientation, Ethnicity) and one for non-
sensitive URLs, with a total of 442,190 webpages. The number
of URLs in sensitive and non-sensitive categories are equally
balanced. Each sample contains content, metadata and a class
label of the webpage. For the SURL text classification task,
we train a neural network with three fully connected layers
and a final softmax output layer, same as in the evaluated
methods [16], [20]. Furthermore, in order to fulfil the funda-
mental setting of an heterogeneous and unbalanced dataset for
FL, we sample uk from a Dirichlet distribution [18] with the
concentration parameter ι = 0.9 as in [12], which controls the
imbalance level of the dataset, then assigns a uk,i fraction of
samples in class k to client i, with the intention of generating
non-IID and unbalanced data partitions. As a sanity check, we
also tested our reputation scheme on a different classification
task involving images and got consistent results as those we
got for sensitive content (see Appendix C).

2) Threat Model: We consider the following threat model.
Attack capability: In the FL setting, the malicious clients have
complete control over their local training data, training process
and training hyper-parameters, e.g., the learning rate, iterations
and batch size. They can pollute the training data as well as
the parameters of the trained model before submitting it to the
server but cannot impact the training process of other clients.
We follow the common practice in the computer security field
of overrating the attacker’s capability rather than underrating
it, so we limit our analysis to worst-case scenarios. There, an
attacker has perfect knowledge about the learning algorithm,
the loss function, the training data and is able to inspect
the global model parameters. However, attackers would still
have to train with the model published by the server, thus
complying with the prescribed training scheme by FL to their
local data. Furthermore, the percentage of byzantine clients p
is an important factor that determines the level of success for
the attack. We assume that the number of attackers is less than
the number of honest clients, which is a common setting in
similar methods [16], [20] to the ones we evaluate and compare
our method with.
Attack strategy: We focus on two common attack strategies
for sensitive context classification, namely, (i) label flipping
attack [24] and (ii) backdoor attack [12]. Comparing to other
attacks, for example model poisoning attack [29], [63], these
two data poisoning attacks are more likely to be carried out by
real users in the real world via our browser extension described
in Section V, since polluting data is easier than manipulating
model updates using the browser extension. Note that privacy
attacks including membership inference attack [65] and prop-
erty inference attack [64], are out of the scope of this paper,
but form part of our ongoing and future work.

In a label flipping attack, the attacker flips the labels of
training samples to a targeted label and trains the model
accordingly. In our case, the attacker changes the label of
“Health” to “Non-sensitive”. In a backdoor attack, attackers
inject a designed pattern into their local data and train these
manipulated data with clean data, in order to develop a
local model that learns to recognise such pattern. We realise
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backdoor attacks inserting the top 10 frequent words with their
frequencies for the “Health” category. Therein the backdoor
targets are the labels “non-sensitive”. A successful backdoor
attack would acquire a global model that predicts the backdoor
target label for data along with specific patterns.

For both attacks, instead of a single-shot attack where an
attacker only attacks in one round during the training, we
enhance the attacker by a repeated attack schedule in which an
attacker submits the malicious updates in every round of the
training process. Also, we evaluate a looping attack where the
attackers spreads out poisoning every 30 epochs for the label
flipping attack based on Figure 5. It is important to note that
even if the attackers have full knowledge of our method, they
would still be unable to mount smarter attacks that would try to
maximise the damage caused while minimising their reputation
drop. This is because the attackers are unaware and cannot
compute their reputation score since the latter is computed at
the server and requires input from all clients. Moreover, we
allow extra training epochs for an attacker, namely, being able
to train the local models with 5 more epochs as in [12].

3) Evaluated Aggregation Methods: We compare the per-
formance of our aggregation method against the existing state-
of-the-art in the area FedAvg [5], as well as against popu-
lar robust aggregation methods such as Coordinate-wise me-
dian [20], Trimmed-mean [20], FoolsGold [8], [15], Residual-
based re-weighting [16], and FLTrust [60].

FedAvg is a FL aggregation method that demonstrates im-
pressive empirical performance in non-adversarial settings [5].
Nevertheless, even a single adversarial client could control the
global model in FedAvg easily [27]. This method averages
local model updates of clients as a global model update
weighted by the fraction of training samples size of each client
compared to total training samples size. We use it as baseline
evaluation to assess the performance of our method.
Median is using coordinate-wise median for aggregation. After
receiving the updates in round t, the global update is set
equal to the coordinate-wise median of the updates, where the
median is the 1-dimensional median.
Trimmed-mean is another coordinate-wise mean aggregation
technique that requires prior knowledge of the attacker fraction
β, which should be less than half of the number of model
parameters. For each model parameter, the server eliminates
the highest and lowest β values from the updates before
computing the aggregated mean with remaining values.
FoolsGold presents a strong defence against attacks in FL,
based on a similarity metric. Such approach identifies attackers
based on the similarity of the client updates and decreases
the aggregate weights of participating parties that provide
indistinguishable gradient updates frequently while keeping
the weights of parties that offer distinct gradient updates. It
is an effective defence for sybil attacks but it requires more
iterations to converge to an acceptable accuracy.
Residual-based re-weighting weights each local model by
accumulating the outcome of its residual-based parameter
confidence multiplying the standard deviation of parameter
based on the robust regression through all the parameters of
this local model. In our reputation-based aggregation method,
we implement the same re-weighting scheme IRLS [10] as
residual-based aggregation, but choose the collection of repu-
tation as the weights of clients’ local models.

FLTrust establishes trust in the system by bootstrapping it
via the server, instead of depending entirely on updates from
clients, like the other methods do. The server obtains an initial
server model trained on clean root data. Then, depending on
the cosine similarity of the server model and each local model,
it assigns a trust score to each client in each iteration.

4) Performance Metrics: We use the average accuracy
(Avg-ACC) of the global model to evaluate the result of the
aggregation defence for the poisoning attack in which attackers
aim to mislead the global model during the testing phase. The
accuracy is the percentage of testing examples with the correct
predictions by the global model in the whole testing dataset,
which is defined as:

Avg-ACC =
# correct predictions

# testing samples

In addition, there is existence of targeted attacks that aim
to attack a specific label while keeping the accuracy of
classification on other labels unaltered. Therefore, instead of
Avg-ACC, we choose the attack success rate (ASR) to measure
how many of the samples that are attacked, are classified as
the target label chosen by a malicious client, namely:

ASR =
# successfully attacked samples

# attacked samples

A robust federated aggregation method would obtain higher
Avg-ACC as well as a lower ASR under poisoning attacks.
An ideal aggregation method can achieve 100% Avg-ACC and
has the ASR as low as the fraction of attacked samples from
the target label.

5) Evaluation Setup: For the malicious attack, we assume
that 30% of the clients are malicious as in [27], which is
also a common byzantine consensus threshold for resistance
to failures in a typical distributed system [6]. For the server-
side setting, in order to evaluate the reliability of the local
model updates sent by the client to the server, we assume that
the server has the ability to look into and verify the critical
properties of the updates from the clients before aggregating.

Also, we only consider FL to be executed in a synchronous
manner, as most existing FL defences require [7], [20], [27],
[29]. For all the above aggregation methods under attack, we
perform 100 iterations using the SURL dataset with a batch
size of 64 and 10 clients. Furthermore, we evaluate our method
for increasing numbers of clients. These settings are inline with
existing state-of-the-art methods for security in FL [12], [16],
[20] More details related to the training setting are presented
in Appendix B.

B. Convergence and Accuracy

In Figure 6 (left), we analyse the performance of our
method in the no attack scenario and compare the convergence
and accuracy of our method with others during training. We
show the training loss (left axis) and average accuracy (right
axis) during 100 training iterations for 7 methods.

Our aggregation starts with the lowest training loss and
maintains it throughout the training process. It only takes
24 iterations to achieve 82% accuracy and then converge to
82.13%, which represents a 2.7× faster converge rate than
FedAvg. In comparison, Residual-based and Trimmed-mean
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Fig. 6: Training Loss (TL) and Average Accuracy (AA) for 100 epochs of Reputation-based, FedAvg, Residual-based, Median,
Trimmed-mean, FoolsGold and FLTrust methods in SURL Dataset under no attack (left) scenario, under label flipping attack
(middle) and backdoor attack (right) scenarios with 30% malicious clients.

have almost identical training loss and take 52 and 47 iterations
to reach 82% accuracy and practically converge to 81.79% and
80.76% respectively, which is 2.2× and 2× slower than our
reputation method. Median reaches 81% at 83 rounds and after
that converges to 79.94%, which amounts to a 3.6× slower
converge rate than our method. Especially, Foolsgold and
FLTrust are slow to converge and do not converge within 100
iterations, so our convergence rate is at least 4.2× better than
FoolsGold and FLTrust. This demonstrates that our reputation
model benefits from convergence speed and accuracy perfor-
mance. This is because our reputation scheme assigns higher
weight to more reliable clients when there is no ongoing attack,
which generates more consistent updates thereby accelerating
the convergence.

C. Resilience to Attacks

We begin by analysing the performance with a static
percentage (30%) of attackers, and then move on to the
performance with a varying percentage of attackers under label
flipping and backdoor attacks.

1) Label Flipping Attack: Static percentage of attack-
ers: Figure 6 (middle) shows the convergence of mentioned
methods under label flipping attack. Our method converges
1.8× to 2× faster than all competing state-of-the-art methods
under attack, enlarging its performance benefits compared to
the no attack scenario. In addition, our method outperforms
competing methods by at least 1.4% in terms of accuracy.
Varying the percentage of attackers: Here we analyse the
impact on our aggregation method as the proportion of attack-
ers increases. Figure 7 (left) shows the change of performance
metrics for varying percentage of attackers for seven evaluated
methods When the percentage of attackers p ranges from
10% to 50%, our method is resistant against label flipping
attacks with a small loss in accuracy and a consistent attack
success rate of all the methods. As p approaches 50%, Fe-
dAvg, Residual-based, Median and FLTrust defences become
ineffective in mitigating the attack, and correspondingly their
Avg-ACC decreases linearly. Moreover, under label flipping
attack during the whole process, our reputation-based method
has the highest accuracy outperforming other methods by 1%

to 23.1%. At the same time it has the lowest ASR. The average
ASR of other methods are at least 82.8% higher than ours.

2) Backdoor Attack: Static percentage of attackers: Fig-
ure 6 (right) shows the convergence of mentioned methods
under backdoor attack. Same as in no attack and label flipping
attack scenario, our method converges 1.6× to 2.4× faster than
all competing state-of-the-art methods. In addition, our method
outperforms competing methods by 3.5% to 33.6% in terms
of classification accuracy.
Varied percentage of attackers: We examine the scenario in
which the percentage of attackers increases. Figure 7 (right)
shows the performance for the seven evaluated methods under
backdoor attack when varying the percentage of attackers p
from 10% to 50%. Figure 7 (right) demonstrates that under
backdoor attack, our reputation-based method has a consis-
tent accuracy throughout the process with the lowest attack
success rate, whereas the average ASR of other methods is
at least 72.3% higher than ours. As p changes, the ASR of
the Residual-based, Median, and Foolsgold methods increase
linearly. Although FLTrust has a stable ASR, it increases by a
factor of 1.39 when p reaches 50%.

First, we evaluate a varying compromise rate for the
label flipping and backdoor attacks using our reputation-based
method. For the label-flipping attack, we vary the percentage of
the flipped label poisoned by attackers from 10% to 90%. Also,
for the backdoor attack, we vary the number of top frequent
words inserted as the trigger pattern, from 5 to 25. The remain-
ing settings are the same as in previous experiments. Figure 8
plots the ACC and ASR when varying the compromise rate for
both attacks. Figure 8 (left) shows that when the percentage
of the poisoned sample is increased, it leads to the decrease
of the accuracy of the model and to a slight increase of ASR.
Figure 8 (right) shows that when we increase the number of
frequent words from 5 to 20, the ASR remains unaffected.
When the frequent words exceed 25, the attack becomes less
stealthy and thus can be more easily detected resulting in a
lower ASR.

We also evaluate the performance of our method in terms of
the number of participating clients. With a 30% compromise
rate, we expand the number of clients from 10 to 200. Our
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Fig. 7: Average accuracy (ACC) and attack success rate (ASR) for varying percentage of attackers from 10% to 50% under label
flipping (left) and backdoor (right) attack for Reputation-based, FedAvg, Residual-based, Median, Trimmed-mean, FoolsGold
and FLTrust methods in SURL Dataset.
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Fig. 9: Average accuracy (ACC) and attack success rate (ASR)
for varying the number of clients from 10 to 200 under label
flipping and backdoor attack with 30% malicious clients.

method performs consistently for a larger number of clients,
as seen by the stable ACC and ASR as the number of clients
grows in Figure 9.

3) Analysis of Attacks: Finally, instead of repeating the
attack at every epoch, the attacker stretches poisoning across
30 epochs in our study of the looping attack. The performance
of the looping attack is seen in Figure 10. As expected, the
looping attack is not as effective as the repeated attack that
we previously assessed. All the methods manage to defend it
with low ASR, and our method still has the greatest accuracy.

4) Evaluation Results: In the no attack scenario, we ob-
serve (i) Our method converges 2× to 4.2× faster than all
competing state-of-the-art methods. (ii) Our method is at
least as good or outperforms competing methods in terms of
classification accuracy. The above validates that our reputation
scheme is helpful even in the no attack scenario. This is due
to the fact that in our algorithm we give higher weights to the
clients with high-quality updates, as illustrated in Figure 12,
causing the model to converge rapidly and retain consistent
accuracy. In addition, even under the two different attacks,
our method:

• converges 1.6× to 2.4× faster than all competing state-
of-the-art methods.
• provides the same or better accuracy than competing
methods.
• yields the lowest ASR compared to all other methods,
with the average ASR of them being at least 72.3% higher
than ours.

We obtained comparable findings for the evaluation of the
aforementioned methods on 100 clients, as presented in Ap-
pendix D. Furthermore, the result is consistent with the theo-
retical analysis: as p increases, so does the error rate.

D. Stability of Hyper-parameters

We employ four hyper-parameters in our reputation model:
rewarding weight κ, prior probability a, time decay parameter
c and window length s. As shown in Remark 1, c and s do not
affect the performance of our model, we only consider hyper-
parameters κ and a, where κ controls the reward weight to
positive observations and a controls the fraction of uncertainty
converted to belief. To demonstrate the impact of these two
hyper-parameters of our reputation model, we grid search κ in
[0.1, 0.2, 0.3, 0.4] and a in [0.1, 0.3, 0.5, 0.7, 0.9]. The setup is
the same as on SURL dataset under label flipping attack. The
ultimate accuracy of stability of reputation-based aggregation
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Fig. 11: Average accuracy and attack success rate as we vary
rewarding weight κ and prior probability a.

are shown in Figure 11. Note that these results are tested for
the label flipping attack and they hold according to theory also
for backdoor.

The result in Figure 11 demonstrates that our approach is
very stable and efficient in terms of hyper-parameter selection,
and it achieves a high degree of precision. Furthermore, the re-
sult is compatible with the theoretical analysis in Section III-C.

E. Comparison against a residual-based method

To demonstrate how our method improves the residual-
base method by assigning the aggregation weights based on
reputation, we consider a scenario with 10 clients in the
FL system, 8 of which are malicious. The training lasts 10
communication rounds during which attackers carry out the
backdoor attack. The remaining settings are the same as the
default. Results are shown in Figure 12, in which the first two
clients are benign, and the rest are malicious. We observe that
for our reputation method the aggregation weights of malicious
clients, which are their reputations, are rectified to 0 since the
second round, demonstrating that our method is successful in
eradicating their influence. On the other hand, the aggregate
weights of malicious clients in residual-based methods, which
are calculated by multiplying the parameter confidence by
its standard deviation, are nearly similar and non-zero. This
is because repeated median regression seldom yields 0 for
the parameter confidence, which causes practically non-zero
weights to be assigned to malicious clients by residual-based
methods. To address this issue, the reputation model uses
positive and negative observations that introduce rewards and
punishments to assign divergent weights to clients. As a result,
benign clients are given higher weights whereas malicious
clients are eliminated from the aggregation.
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Fig. 12: The aggregation weights of clients from our
reputation-based (left) and residual-based method (right) for
10 communication rounds under label flipping attack with 80%
attackers.

Fig. 13: EITR extension in action. The letter “H” inside the
red frame at the bottom right of the extension’s icon indicates
that a health-related page has been detected.

V. THE EITR SYSTEM

In this section, we provide a high level description of
our EITR [67] system (standing for “Elephant In the Room”
of privacy). We then present some preliminary results with
real users demonstrating the ability of the system to quickly
learn how to classify yet unseen sensitive content, in our case
COVID-19 URLs pertaining to the category Health, even in
view of inaccurate user input. The system is currently being
used as a research prototype to evaluate the robustness of
our algorithm in a simple real-world setting. A full in depth
description of the system and its performance with more users
and more intricate settings, including adoption, incentives, and
HCI issues, over a longer time period is the topic of our
ongoing efforts and will be covered by our future work.

A. System Architecture and Implementation

The EITR system is based on the client-server model.
The back-end server is responsible to distribute the initial
classification model and the consequent updated model(s) to
the clients and receive new annotations from the different
clients of the system. The client is in the form of a web browser
extension that is responsible to fetch and load the most recent
global classification model to the users’ browser from the back-
end server. The loaded model can then be used to label website
in real time into the 5 different sensitive topics as defined by
GDPR, i.e., Religion, Health, Politics, Ethnicity and Sexual
Orientation. Next, we provide more details for each part of
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Fig. 14: Results of real-user experiment for COVID-19 related URLs with 50 users over 100 iterations. (left): the reputation
score of the real users at the end of experiment, (middle): the accuracy of the centralised classifier and the global model of our
reputation-based FL approach for COVID-19 URLs, and (right): the ROC curve of real-user experiment with 0.79 area under
the ROC curve (AUC).

the system.
Back-end server: The back-end server is written in JavaScript
using the node.js Express [40] framework. To build the initial
classification model we use the dataset provided by Matic
et al. [4], and the TensorFlow [41] and Keras [42] machine
learning libraries. The final trained model is then exported
using the TensorFlow.js [43] library in order to be able to
distribute it to the system’s clients (browser extension). The
back-end server also includes additional functionalities such
as the creation and distribution of users’ tasks, i.e., a short
list of URLs that the users need to visit and annotate, and an
entry point that collects the resulting users annotations during
the execution of the task.
Web browser extension: Currently the browser extension only
supports the Google Chrome browser and is implemented in
JavaScript using the Google Chrome Extension APIs [45].
To handle the classification model the extension utilises the
TensorFlow.js [43] library to load, use, and update the model.
The main functionality of the extension is to classify the
visited website in real time and provide information to the
user related to the predicted class as depicted in Figure 13.
The website classification is based on the metadata (included
in the website <head> HTML tag) and the visible text of the
website. The extension also allows users to provide their input
related to their agreement or disagreement with the predicted
class using a drop down list as depicted in Figure 13 with the
label “Choose a new Class”.

B. Real Users Experimental Setup

The goal of the real-user experiment is to evaluate our
federated reputation-based method on real user activity (instead
of systematic tests), and demonstrate that even with real users
with different comprehensions of the definition of sensitive
information, our method can learn new content fast and
achieve higher accuracy than centralised classifiers, which is
compatible with our simulation experiment.

For the setup, the participant is directed to visit the
experiment website that provides the necessary information
and instructions on the goal of our study, the definition of
sensitive information provided by the current GDPR and how
to participate in our study. In order to have access to the
browser extension and the installation instructions the user
must in advance give explicit consent and accept the data
privacy policy. Upon successful installation of the extension,

new users are asked to provide a valid email address (to contact
them for the reward) and then receive their task, a list of 20
URLs, that they need to visit and provide their labels in order
to successfully complete their task. The list of 20 URLs is
sampled by the Dirichlet distribution with ι = 0.9 for each
participant from a database, which includes 300 URLs with
sensitive and non-sensitive content related to COVID-19.

Ethical Considerations: We have ensured compliance with
the GDPR pertaining to collecting, handling, and storing data
generated by real users. To that end, we have acquired all
the proper approvals from our institutions. Furthermore, the
participants are directed to visit a pre-selected set of URLs
selected by us to avoid collecting the actual visiting patterns
of our users. In addition, the user input is only collected if and
only if the user explicitly provide input to the drop-down list
labelled “Choose a new Class” to avoid collecting the visiting
patterns of the user accidentally while they are executing their
tasks. Finally, we only use the users’ email address to contact
them for the reward. The mapping between the user input
and their email address is based on a random identifier that
is generated during the installation time of the extension.

C. Validation with Real Users

Data collection: We had 50 users participating in our exper-
iment. In order to evaluate our reputation-based FL method
using real-user data, we define a methodology to label ground
truth on COVID-19 related sites.
Ground truth methodology: To set the ground truth for
COVID-19 sites related to our sensitive or non-sensitive labels,
we create a database of 100 websites, which we collect by
searching on Google with the query “sensitive websites about
COVID-19” and choose the top 100 sites returned from the
query. Then, four experts in the privacy field, independently
annotate them based on their professional expertise in order to
achieve an agreement on whether each of those sites included
sensitive or non-sensitive content.
Ground truth annotation: In order to evaluate the annotation
of the 100 websites from human experts, we calculate the
inter-rater agreement among them using Fleiss Kappa [61]. We
obtain 0.56 of Fleiss Kappa, which is an acceptable agreement
because the values of Fleiss Kappa. above 0.5 are regarded as
good. Furthermore, given that COVID-19 is a controversial
issue, it is difficult for humans to agree on what constitutes
sensitive content relating to it. Even though, we still attain a
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valid ground truth of 85 items belonging to the health sensitive
category with agreement ratings of at least 0.5. Note that
we also classify the above 100 websites using the centralised
classifier proposed in [4] and get only 53.13% accuracy.
Result with real users: Figure 14 shows the results of accu-
racy and reputation score with 50 real users in the experiment.
Figure 14 (left) shows that the majority of users have reputation
scores falling in the intermediate range, with some having a
very high reputation and a few having a very low reputation.
This indicates the divergence of the user’s interpretation of
the sensitive information as we expect. In Figure 14 (middle)
we compare the accuracy of the centralised classifier and the
global model of our reputation-based FL approach for COVID-
19 URLs. Despite the diversity of reputation scores of real
users, our method converges as rapidly as in simulation and
achieves an average accuracy of 80.36%, thereby verifying
the quick convergence and high accuracy results presented
in the previous sections. Figure 14 (right) shows that the
ROC curve in real-user experiment yielded 0.79 AUC. Our
result is acceptable in this scenario because most existing
FL techniques are designed to minimise the conventional cost
function and are not optimal for optimising more appropriate
metrics for imbalanced data, such as AUC [62].

As we observe, with real users holding our method achieve
a good performance. This means that, as new sensitive content
appears and/or is defined by GDPR or new upcoming legis-
lation, we will be able to continue training our FL model for
this type of task with quick convergence and good accuracy.
The empirical results in Figure 14 (middle) also shows that
there is a quick convergence to the accuracy’s stable value
within a small number of iterations (around 30), in line with
the theoretical results in Section III.

VI. CONCLUSION

In this paper we have shown how to use federated learning
to implement a robust to poisoning attacks distributed classifier
for sensitive web content. Having demonstrated the benefits of
our approach in terms of convergence rate and accuracy against
state-of-the-art approaches, we implemented and validated it
with real users using our EITR browser extension. Collectively,
our performance evaluation has showed that our reputation-
based approach to thwarting poisoning attacks consistently
converges faster than the state-of-the-art while maintaining or
improving the classification accuracy.

We are currently working towards disseminating EITR to a
larger user-base and using it to classify additional sensitive
and non-sensitive types of content. This includes but it is
not limited to categories defined by the users themselves for
different purposes, not necessarily related to sensitive content,
as well as evaluating additional attacks and threat models under
our subjective-logic reputation scheme for FL. In turn, our
approach can support other FL models going beyond sensitive
content classification in future work.
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APPENDIX

A. Proofs

The following are the lemmas we utilise in the proof of
Theorem 1.

Lemma 1. From Assumption 1 and 4, L(w) is L-smooth and
µ-strongly convex. Then ∀w1, w2 ∈ W , one has

⟨∇L(w1)−∇L(w2),w1 −w2⟩ ≥
Lµ

L+ µ
∥w1 −w2∥22

+
1

L+ µ
∥∇L(w1)−∇L(w2)∥22 (15)

Lemma 2. The difference between m(w) and ∇L(w) is
bounded in every iteration:

∥m(w)−∇L(w)∥2 ≤ ∥m0(w)−∇L(w)∥2 +
√
N∆1 (16)

where:

∆1 =
M(ϖ(M − 1) + 2E√

Mδ
)

Wa(M−1)(κN+W )
(ηN+W )(κN+Wa) + 1

E = sup

{
37

√
2λ(M + 4)

25(M − 1)
median

i

{
|wt

i,n − B̂nx
t
i,n − Ân|

}}
and

m0(w) := median
i
{mi(w)}

1) Proof of Lemma 1: Let g(w) = L(w)− ς
2 ∥w∥

2
2. Base

on the assumption 4, we have g(w) is (L−ς)-strongly convex.
from [23] 3.6, we have

⟨∇L(w1)−∇L(w2),w1 −w2⟩ ≥
1

L
∥∇L(w1)−∇L(w2)∥22

(17)

Hence,

⟨∇g(w1)−∇g(w2),w1 −w2⟩ ≥
1

L− ς
∥∇g(w1)−∇g(w2)∥22

(18)

Now We have

⟨∇
(
L(w1)−

ς

2
∥w1∥22

)
−∇

(
L(w2)−

ς

2
∥w2∥22

)
,w1 −w2⟩

≥ 1

L+ µ

∥∥∥∇(
L(w1)−

ς

2
∥w1∥22

)
−∇

(
L(w2)−

ς

2
∥w2∥22

)∥∥∥2

2

(19)

And therefore

⟨∇L(w1)−∇L(w2),w1 −w2⟩ − ⟨ςw1 − ςw2,w1 −w2⟩

≥ 1

L− ς
∥(∇L(w1)−∇L(w2))− (ςw1 − ςw2)∥22 (20)

Refer to Assumption 1, we obtain

⟨∇L(w1)−∇L(w2),w1 −w2⟩ ≥
Lς

L− ς
∥w1 −w2∥22

− 2ς

L− ς
⟨∇L(w1)−∇L(w2),w1 −w2⟩

+
1

L− ς
∥∇L(w1)−∇L(w2)∥22

≥ − Lς

L− ς
∥w1 −w2∥22 +

1

L− ς
∥∇L(w1)−∇L(w2)∥22 (21)

Let ς = −µ, then we conclude the proof of Lemma 1.

2) Proof of Lemma 2: We have the following equation:

∥m(w)−∇L(w)∥2 ≤ ∥m(w)−m0(w)∥2
+ ∥m0(w)−∇L(w)∥2 (22)

from [16] inequality 18, we know ∀i, n,∃E > 0

sup |ei,n| ≤
E√
Mδ

Where

E = sup

{
37

√
2λ(M + 4)

25(M − 1)
median

i

{
|wt

i,n − B̂nx
t
i,n − Ân|

}}
and the dimension of w is N . Hence the distance between the
two aggregation functions satisfies

∥m(w)−m0(w)∥2 ≤
√
N

∥∥∥∥∥
M∑
i=1

R̄i

(
B̂i (M − 1) +

2E√
Mδ

)∥∥∥∥∥
2

(23)

Based on Equation 12

s exp(−cs)∑s
j=0 exp(−cj)

· Wa

ηN +W
≤ R̃t

i (24)

R̃t
i ≤

s∑s
j=0 exp(−cj)

· κN +Wa

κN +W
(25)

so we have

R̄i =
R̃t

i∑M
i=1 R̃

t
i

≤ 1
Wa(M−1)(κN+W )
(ηN+W )(κN+Wa)

+ 1
(26)

Due to our Aggregation Algorithm

B̂n = median
i

(
median

i ̸=j

wj,n − wi,n

xj,n − xi,n

)
≤ ϖ (27)

Therefore, we have∥∥∥∥∥
M∑
i=1

R̄i

(
B̂i (M − 1) +

2E√
Mδ

)∥∥∥∥∥
2

≤
M(ϖ(M − 1) + 2E√

Mδ
)

Wa(M−1)(κN+W )
(ηN+W )(κN+Wa)

+ 1

= ∆1 (28)

Hence, we proof Lemma 2.

3) Proof of Theorem 1: We first consider a general problem
of robust estimation of a one dimensional random variable.
Suppose that there are M clients, and p percentage of them
are malicious and own adversarial data. In t iteration, we have:∥∥wt −w∗∥∥

2
=

∥∥(wt−1 − rm(wt−1)−w∗∥∥
2

≤
∥∥wt−1 − r∇L(wt−1)−w∗∥∥

2︸ ︷︷ ︸
A

+ r
∥∥m(wt−1)−∇L(wt−1)

∥∥
2︸ ︷︷ ︸

B

(29)

We bound part A first. We have∥∥wt−1 − r∇L(wt−1)−w∗∥∥2

2
=

∥∥wt−1 −w∗∥∥2

2

+ r2
∥∥∇L(wt−1)

∥∥2

2
− 2r

〈
∇L(wt−1),wt−1 −w∗〉 (30)
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Under the Assumption 4 and Lemma 1, we have〈
∇L(wt−1),wt−1 −w∗〉 ≥ Lµ

L+ µ

∥∥wt−1 −w∗∥∥2

2

+
1

L+ µ

∥∥∇L(wt−1)
∥∥2

2
(31)

Then we combine inequalities 31 to equation 30∥∥wt−1 − r∇L(wt−1)−w∗∥∥2

2
≤ (1− 2r

Lµ

L+ µ
)
∥∥wt−1 −w∗∥∥2

2

+ (r2 − 2r

L+ µ
)
∥∥∇L(wt−1)

∥∥2

2

(32)

From Assumption 1, we can derive:∥∥∇L(wt−1)−∇L(w∗)
∥∥2

2
≤ L2

∥∥wt−1 −w∗∥∥2

2
(33)

Combining inequalities 32 and 33, we have:∥∥wt−1 − r∇L(wt−1)−w∗∥∥2

2
≤ (1− Lr)2

∥∥wt−1 −w∗∥∥2

2
(34)

Let r < 1
L , we have∥∥wt−1 − r∇L(wt−1)−w∗∥∥

2
≤ (1− Lr)

∥∥wt−1 −w∗∥∥
2

(35)

Then we turn to bound part B. Based on Lemma 2, we
know:

∥m(w)−∇L(w)∥2 ≤ ∥m0(w)−∇L(w)∥2 +
√
N∆1 (36)

Assume Assumption 1, 2, 3 and 4 holds, and ∃ϵ fulfills
inequality 13. Based on Lemma 1 in [20], with the probability
1− ξ ≥ 1− 4d

(1+Q̂MLυ)
d , we have

∥m0(w)−∇L(w)∥2 ≤
√

2

Q̂
DϵVw(

√
d log(1 + Q̂MLυ)

M(1− p)

+ C
Gw√
Q̂

+ p) + 2
√
2

1

MQ̂
= ∆2 (37)

where C = 0.4748. After obtaining the bound of part A and
B, now we have∥∥wt −w∗∥∥

2
≤ (1− Lr)

∥∥wt−1 −w∗∥∥
2︸ ︷︷ ︸

Bound A

+ r
(√

N∆1 +∆2

)
︸ ︷︷ ︸

Bound B

(38)

Hence, we can prove Theorem 1 through iterations using
the formula of a finite geometric series,∥∥wt −w∗∥∥

2
≤ (1− Lr)t

∥∥w0 −w∗∥∥
2

+
1− (1− Lr)t

Lr
r
(√

N∆1 +∆2

)
≤ (1− Lr)t

∥∥w0 −w∗∥∥
2
+

1

L

(√
N∆1 +∆2

)
(39)

B. Experimental Setting

Our simulation experiments are implemented with Pytorch
framework [28] on the cloud computing platform Google
Colaboratory Pro (Colab Pro) with access to Nvidia K80s,
T4s, P4s and P100s with 25 GB of Random Access Memory.
Table II shows the default setting in our experiments.

TABLE II: Default experimental settings

Explanation Notation Default Setting

prior probability a 0.5
non-information prior weight W 2
weight for positive observation κ 0.3
time decay parameter c 0.5
window length s 10
confidence threshold δ 0.1
value range ϖ 2
Objective Function L(·) Negative Log-likelihood Loss

Learning rate r 0.01
Batch size per client 64
The number of local iterations 10
The number of total iterations 100

C. Supplementary dataset for experiment

CIFAR-10 is a supplementary dataset assessing the robust-
ness of our reputation scheme in image datasets to poisoning
attacks. The CIFAR-10 dataset is a 32×32 colour image dataset
that includes ten classes with a total number of 50 thousand
images for training and 10 thousand images for testing. Here
we use ResNet-18 [19] model pertaining to ImageNet [25] with
20 iterations. In CIFAR-10 dataset, attackers switch the label
of “cat” images to the “dog”.

Figure 15 shows that under label flipping and backdoor
attack during the whole process, our reputation-based method
has the highest accuracy outperforming other methods and the
lowest ASR, excluding Foolsgold in CIFAR-10, yielding a
result that is similar to the one in SURL.

D. Extra Experimental Result

We evaluate the proposed defence for a varying number
of clients from 10 to 200 in the SURL dataset. Here, we
analyze the performance of the aforementioned methods for
100 clients. The results are presented in Figure 16 and Fig-
ure 17 that correspond to the average accuracy (ACC) and
attach success rate (ASR), respectively.

In the no attack scenario, we observe that our method
converges between 1.7× to 7.1× faster than all competing
state-of-the-art methods with at least as good performance (or
outperforms) compared with competing methods in terms of
classification accuracy, see Figure 16 (left). In addition, even
under the two different attacks, our method: (i) converges
between 1.6× to 3.6× faster than all competing state-of-the-
art methods, (ii) provides the same or better accuracy than
competing methods, and (iii) yields the lowest ASR compared
to all other methods.
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Fig. 15: Average accuracy (ACC) and attack success rate (ASR) for varying percentage of attackers from 10% to 50% under
label flipping (left) and backdoor (right) attack for Reputation, FedAvg, Median, Residual-based, Median, Trimmed-Median,
FoolsGold and FLTruts in CIFAR-10 dataset.
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Fig. 16: Average accuracy (ACC) with no attack (left) and varying percentage of attackers from 10% to 50% under label flipping
(middle) and backdoor (right) attack for Reputation, FedAvg, Residual-based, Median, Trimmed-mean, Foolsgold, FLTrust in
SURL dataset.
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Fig. 17: Attack success rate (ASR) for varying percentage of attackers from 10% to 50% under label flipping (left) and backdoor
(right) attack for Reputation, FedAvg, Residual-based, Median, Trimmed-mean, Foolsgold, FLTrust in SURL dataset.

18


	Introduction
	Background
	A Centralised Offline Classifier for Sensitive Content
	Challenges in Developing a Practical Classifier for Users
	Related Work

	A Robust FL Method for Classifying Sensitive Content on the Web
	FL Framework for Classifying Sensitive Content
	A Reputation score for Thwarting Poisoning Attacks
	Attack Detection Scheme
	Reputation Model
	Aggregation Algorithm

	Theoretical Guarantees

	Performance Evaluation
	Experimental Setup
	Datasets
	Threat Model
	Evaluated Aggregation Methods
	Performance Metrics
	Evaluation Setup

	Convergence and Accuracy
	Resilience to Attacks
	Label Flipping Attack
	Backdoor Attack
	Analysis of Attacks
	Evaluation Results

	Stability of Hyper-parameters
	Comparison against a residual-based method

	The EITR system
	System Architecture and Implementation
	Real Users Experimental Setup
	Validation with Real Users

	Conclusion
	References
	Appendix
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1

	Experimental Setting
	Supplementary dataset for experiment
	Extra Experimental Result


