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ABSTRACT
In this paper we propose a method for using mobile network data
to detect potential COVID-19 hospitalizations and derive corre-
sponding epidemic risk maps. We apply our methods to a dataset
from more than 2 million cellphones, collected by a mobile net-
work provider located in London, UK. The approach yields a 98.6%
agreement with released public records of patients admitted to NHS
hospitals. Analyzing the mobility pattern of these individuals prior
to their potential hospitalization, we present a series of risk maps.
Compared with census-based maps, our risk maps indicate that the
areas of highest risk are not necessarily the most densely populated
ones and may change from day to day. Finally, we observe that
hospitalized individuals tended to have a higher average mobility
than non-hospitalized ones.

CCS CONCEPTS
• Networks → Mobile networks; • Computing methodolo-
gies→Model development and analysis; • General and ref-
erence→ Cross-computing tools and techniques;Measure-
ment; Evaluation; Estimation; Validation.

KEYWORDS
Mobile network data, Signalling data, Human mobility, Epidemic
risk map, COVID-19

1 INTRODUCTION
Amidst the COVID-19 epidemic, the necessity to unleash the full
potential of digital tools and data-enabled research in the field of
health becomes more urgent than ever. From the very first stages of
the pandemic many tools have emerged to help with understanding
and combating it. One of the most important tools are the risk maps,
since they visualise the disease distribution and intensity. Coloring
areas according to a risk measures is useful for first responders, de-
cision makers, for evaluating the stress on the healthcare system [3],
and for decisions making at the level of the individual [22].

1.1 Related work
There are multiple ways to create a risk map, e.g., using census
data [10, 21], or cases reported by public health institutions. An-
other approach based on online surveys has recently been used
in several countries [1, 18]. The survey-based methods provide

an alternative way of evaluating the number of infections while
preserving the privacy of the responses but require a reasonable
number of responses, which is not always easy to get.

Static maps are usually based on traditional epidemic models that
assume that mobility is a random process. However, the population
structure, patterns of interactions and mobility, are elements that
can substantially alter the likelihood of disease propagation. To
capture this, mobile network data can be effectively exploited to
improve our understanding of human mobility dynamics and its
impact on infectious diseases contagion [5], the spatial spread of
cholera [2]. Also to predict the risk of viruses such as the Zika,
malaria and the dengue fever [19], and COVID-19 [11, 12, 15].

An alternative tool is Contact Tracing [6, 16], a technique that
uses near-field communications and/or GPS at a micro-scale. Recent
applications based on Contact Tracing have been developed for the
study of the COVID-19 spread, such as the one from Google and
Apple [9]. Contact Tracing has the advantage of having an increased
accuracy since it can identify the interaction at the level of a few
meters of distance. However, it suffers from some drawbacks since
it requires a large percentage of adoption by the population and it
involves serious privacy concerns [4].

1.2 Our Contributions
In this paper we propose a method for computing risk maps based
on mobile network data that provides detailed spatio-temporal
information about millions of cellphones at various scales. The
proposed method consists of three phases. In the first phase (Sec-
tion 2), we describe the algorithm for detecting COVID-19 potential
hospitalizations from mobile network data, and the parameters in-
volved. The second phase (Section 3) consists of the validation and
fine-tuning study based on data released by the National Health Ser-
vice (NHS). In the third phase (Section 4), for each person detected
as hospitalized, we study their mobility pattern during the two
weeks prior to their day of hospitalization. Based on this, we obtain
detailed dynamic risk maps that change through time and thus
capture more accurately the distribution, evolution and intensity
of the disease. Our conclusions are presented in Section 5.

2 DETECTING HOSPITALIZATIONS FROM
MOBILE NETWORK DATA

In this section we describe how to exploit mobile network data for
detecting potential COVID-19 hospitalizations.
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2.1 Formulation
Consider the population of cellphone owners Ω, and a sample
𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛} ∈ Ω. Let us denote as 𝐷𝑆 the mobile network
signalling dataset containing information for each individual 𝑠𝑖 ∈ 𝑆 ,
𝑖 = 1, ..., 𝑛. This data covers the region of Greater London, United
Kingdom and contains the GDPR-compliant and anonymized in-
formation of more than 2 million users collected over March and
April in 2020, by a British mobile network provider. 𝐷𝑆 contains
the individual’s home location ℎ𝑖 , which has been approximated
following the methodology in [14]. The dataset 𝐷𝑆 also contains
daily spatio-temporal information for each individual based on their
cellphone activity, such as their top location at night (from 00:00h
to 08:00h), i.e., the location in which the person spent most of the
time in that period: 𝑙𝑖 , and the amount of time spent in that area: 𝑡𝑖 .

2.2 Detection
The objective is to obtain the set of potentially hospitalized indi-
viduals by inspecting if their mobile phone appears at night at the
same location or near to a hospital admitting COVID-19 patients.
Table 1 shows the parameters involved in the algorithm.

Table 1: Parameters involved in the algorithm.

Concept Notation Values Meaning

Location 𝜑 𝑃 Postcode
granularity 𝑇 Cell-tower

Cell-tower 𝑟 0.5 500 m
ratio 0.75 750 m

1.0 1000 m

Time granularity 𝜂 ≥ 1 # of consecutive nights

A set of 74 hospitals in London, admitting COVID-19 patients,
was constructed using the information provided in [17]. For each
hospital, their location depends on the granularity 𝜑 . In the case
of postcode level, the location of a hospital is a single value, i.e.,
the postcode in which that hospital is located. In the case of cell-
towers, it is a list of surrounding cell-towers instead of just one,
because hospitals are large buildings and individuals inside may
connect and disconnect to the several antennas around them, during
a certain amount of time. For this purpose, different ratios 𝑟 around
the center of the building are considered, namely 500 meters, 750
meters and 1 kilometer. Now, let us define as 𝐿 (𝜑,𝑟 ) the complete list
of postcodes or cell-towers, depending on the value of 𝜑 , associated
to any hospital.

The idea is to cross the information about the individuals’ loca-
tion and activity at night, with hospital locations, and select those
individuals that appear at night at a postcode in which a hospital is
located, or those connecting to a cell-tower that belongs to the list
of towers of some hospital. This could then be used as an indication
that an individual may have been hospitalized.

2.3 Filters
The approach can lead to false positives (incorrectly detected as hos-
pitalized) as well as false negatives (true hospitalized not detected).
Therefore, we defined a set of filters to reduce these rates.

Home Filter: Individuals can appear at night in the marked
locations because they just live in that area. These are potential
false positives. To exclude them we set a condition to consider only
the subscribers 𝑠𝑖 for which their home location is not in the list of
hospital locations: ℎ (𝜑 )

𝑖
∉ 𝐿 (𝜑,𝑟 ) .

Work Filter: Individuals can appear at night at the hospital
because they are working there, e.g. nurses, doctors, security guards,
etc. If they exhibit multiple home-hospital transitions, very rarely
they will be hospitalized due to COVID-19, because this disease
tends to have a large recovery time period [20]. Therefore, let us
consider a fixed individual 𝑠𝑖 that appears at the hospital 𝑙

(𝜑 )
𝑖

∈
𝐿 (𝜑,𝑟 ) for the total number of 𝜂 nights. Denote the first night as
𝜂0 and the last night as 𝜂𝑙𝑎𝑠𝑡 . If 𝜂0 + 𝜂 = 𝜂𝑙𝑎𝑠𝑡 , this means that this
person has stayed at the hospital and did not changed its location
in the middle of the hospitalization period. If not, this means that
in the middle of the whole period, the individual spent at least one
night somewhere else. Then, we set a condition to consider only
the individuals that appear at night at the hospital for 𝜂 consecutive
nights, but they neither appear again nor exhibit other transitions.

2.4 Detection and Filtering algorithm
Algorithm 1 depicts the Detection and Filtering approach for obtain-
ing the final set Φ of detected COVID-19 hospitalized individuals.

Input: 𝐷𝑆 , 𝜑 , 𝑟 , 𝜂
foreach 𝑠𝑖 ∈ 𝑆 do

if ℎ (𝜑 )
𝑖

∉ 𝐿 (𝜑,𝑟 ) & 𝑙
(𝜑 )
𝑖

∈ 𝐿 (𝜑,𝑟 ) , for 𝜂 nights s.t.
𝜂0 + 𝜂 = 𝜂𝑙𝑎𝑠𝑡 then

𝑠𝑖 ∈ Φ
else

𝑠𝑖 ∉ Φ
Output: Φ

Algorithm 1: Detection and Filtering algorithm.

3 VALIDATION AND FINE-TUNING
The parameters that can be fine-tuned in order to improve the
algorithm’s performance are 𝜑 : the level of granularity, 𝑟 : the differ-
ent ratios around the hospitals, and 𝜂: the number of consecutive
nights at the hospital. The overall objective of the validation and
fine-tuning is to identify the parameter configuration that matches
favorably with the validation data across different settings.

In this study we used the NHS dataset containing the number of
daily hospitalizations reported from the start of the epidemic, at the
level of NHS Trust. We validate across three different settings: (A)
with the total number of patients admitted in hospitals considering
all NHS Trust together, (B) with one of the groups called Barts
NHS Trust, and (C) with the Nightingale temporary hospital. For
each setting, the daily robust Spearman correlation coefficient 𝜌
between the algorithm results and the reported daily cases in the
validation data, is also obtained. Daily correlation in setting C, for
Nightingale temporary hospital cannot be computed because daily
reported cases for this hospital was not available.

Table 2 summarizes the results. Note that the parameter con-
figuration that consistently matches the validation data across dif-
ferent settings, while maintaining a high value of correlation 𝜌
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between the estimations and the validation data (marked in bold)
is {𝜑 = 𝑇, 𝑟 = 0.75, 𝜂 = 4}. This configuration yields a 98.6% agree-
ment with released public records of patients admitted to hospitals
in London, within the same time frame.

Table 2: Results in the validation study.

Setting Description 𝜑 , 𝑟 Min. 𝜂 𝜌

A All 𝜑 = 𝑃 2 0.623
Hospitals 𝜑 = 𝑇 , 𝑟 = 0.5 4 0.885

𝝋 = 𝑻, 𝒓 = 0.75 4 0.896
𝜑 = 𝑇 , 𝑟 = 1 3 0.826

B Barts 𝜑 = 𝑃 2 0.637
NHS Trust 𝜑 = 𝑇 , 𝑟 = 0.5 5 0.801

𝝋 = 𝑻, 𝒓 = 0.75 4 0.862
𝜑 = 𝑇 , 𝑟 = 1 3 0.638

C Nightingale 𝜑 = 𝑃 11 X
Hospital 𝜑 = 𝑇 , 𝑟 = 0.5 10 X

𝝋 = 𝑻, 𝒓 = 0.75 4 X
𝜑 = 𝑇 , 𝑟 = 1 4 X

4 RISK MAPS
In this section we describe how diverse risk maps can be obtained
to explore the mobility of the individuals detected as hospitalized,
during the period of two weeks prior to their first day of hospitaliza-
tion. The approximate spatio-temporal trajectory of a mobile phone
and its user can be reconstructed by linking the mobile network
data associated with that phone with the geographic location of
the cellular tower, or the postcode containing that tower.

4.1 Algorithm for obtaining the risk maps
We propose to define a measure of risk that depends on the number
of people detected as hospitalized that are at the same time in the
same location, two weeks prior to the moment of their hospitaliza-
tion, i.e., it can be seen as an ‘a-priori’ measure of risk. A higher
number of people located at the same time in a fixed area increases
the risk of infection for everyone else, due to exposure [7, 13]. From
epidemiology models, several different measures of risk can be
computed, but supporting which is the best epidemiology model is
beyond the scope of our work. When a particular measure of risk
is computed, it can be considered as a weight for each specific area
and based on that, a color can be assigned to each area and a risk
map can be obtained.

Algorithm 2 describes our proposed method for obtaining the
daily risk maps. A risk map movie1 can be obtained if we consider
the time-lapse set of daily risk maps for a fixed granularity. This
result can help capturing the evolution of the epidemic spread
pattern and the spatial risk of contagion.

The parameters involved in Algorithm 2 are the following:
• 𝑇 : the total number of days.
• 𝑡 = 1, ...,𝑇 : the daily time steps.
• 𝜆: the geography to plot the risk map.

1An example of risk map movie can be found here.

Input: Φ, 𝜆, 𝐷𝜆

foreach 𝑡 = 1, ...,𝑇 do
foreach 𝑘 = 1, ..., 𝐴 do

foreach 𝑖 = 1, ..., |Φ| do
if 𝑠𝑖 is in area 𝑙𝑘 at time 𝑡 then

𝑎
(𝑙𝑘 ,𝑡 )
𝑖

= 1
else

𝑎
(𝑙𝑘 ,𝑡 )
𝑖

= 0
𝑝 (𝑙𝑘 ,𝑡 ) =

∑
𝑠𝑖 ∈Φ 𝑎

(𝑙𝑘 ,𝑡 )
𝑖

Risk Map (𝜆, 𝑡 )
Output: Risk Map Movie (𝜆)
Algorithm 2: Algorithm for obtaining the risk maps.

• 𝐷𝜆 : the polygon geometries depending on the selected 𝜆.
• 𝐴: the total number of areas in the map.
• 𝑙𝑘 ∈ 𝐷𝜆 (𝑘 = 1, ..., 𝐴): the location areas in the map.
• 𝑎

(𝑙𝑘 ,𝑡 )
𝑖

, for 𝑖 = 1, ..., |Φ|: counts the number of users (detected
as hospitalized) located in area 𝑙𝑘 at time 𝑡 .

• 𝑝 (𝑙𝑘 ,𝑡 ) : the measure of risk of area 𝑙𝑘 at time 𝑡 .

4.2 Comparison with static maps
Various risk map movies at different granularities (OA, LSOA,
MSOA, Boroughs, postcode units, sectors or districts) were ob-
tained. Figure 1 shows the average risk map versus the static census
map in the case of Borough level granularity, as an example. The
color range in the risk map, from white to purple means that the
more purple an area, the more dangerous (in case of a risk map) it
is. We compared our risk maps with the static population map re-
sulting from the census data [8], and we computed the correlations
between the two.

Figure 1: Risk map (up) versus Census map (down), at bor-
ough level.

With all the considered granularities, the average risk maps look
very different in comparison with their respective analogous popu-
lation map. This can be seen at first sight in the example (Figure 1).

https://networks.imdea.org/team/research-groups/data-transparency-group/
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Not only do the risk maps differ, in average, from the corresponding
population map, but if we add the time dimension and consider
the different dynamic risk maps for each night, this disagreement
increases. To measure these differences numerically, for each gran-
ularity level, we also computed the correlations between the daily
risk maps and the population map. The resulting low correlations
indicate that the risk maps could not be inferred by simply
taking into account the population density, i.e., the areas of
highest risk are not necessarily the most densely populated
ones. Moreover, there is also some variability within the group
of individual daily risk maps and, more concretely, the areas of
highest risk vary from day to day. Additionally, if we use the time
dimension to compute what are the most dangerous days for the
top 10 (in average) most dangerous areas, we discover that most
times, these are weekends.

4.3 Bounding box analysis
We computed for each (detected as) hospitalized individual the
bounding box containing the set of locations on which the user
moves. The average diagonal of their bounding box was 8.5km,
with a standard deviation of 10.27km. Meanwhile, for the rest of
individuals, the average diagonal of their bounding box was 5.29km,
with a standard deviation of 5.82km. We performed a hypothesis
test comparing the average diagonals of the bounding boxes for
each type of individual, and with significance level of 𝛼 = 0.05
the results were statistically significant. The test statistic is 16.61,
much higher than the critical point 𝑧𝛼=0.05 = 1.645, which results in
rejecting the null hypothesis, i.e., with 95% of confidence, the data
favors the alternative hypothesis that the hospitalized users have an
average mobility higher than the ones not detected as hospitalized.

5 CONCLUSIONS
In this paper we propose an approach to detect potential COVID-19
hospitalizations and epidemic risk maps, based on mobile network
data containing detailed spatio-temporal information at various
scales. The proposed method yields a 98.6% agreement with re-
leased public records of patients admitted to hospitals in London,
within the same time frame. A validation and fine-tuning study is
performed to found the parameter configuration that consistently
matches the validation data across different settings, while main-
taining a high value of correlation between the estimations and the
validation data. Analyzing the mobility patterns of the final set of
potentially hospitalized individuals, during the two weeks prior to
their day of hospitalization, we present a series of risk maps. We
compare our proposed risk maps with static census-based maps
and the results show that the areas of highest risk are not necessar-
ily the most densely populated ones. This disagreement increases
when we add the time dimension. We also observe that hospital-
ized individuals tended to have a higher average mobility than
non-hospitalized ones. Overall, the conclusion is that the multidi-
mensional characteristic of the risk of an area is better reflected
when taking spatio-temporal information of high granularity like
the one proposed in this paper.
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